
Property-Based Testing Across Four Environments
in Open-Source Repositories

Sára Juhošová

Delft University of Technology

Delft, The Netherlands

S.Juhosova@tudelft.nl

Harald Toth

Delft University of Technology

Delft, The Netherlands

H.Toth@student.tudelft.nl

Antonios Barotsis

Delft University of Technology

Delft, The Netherlands

A.Barotsis@student.tudelft.nl

Andreea Costea

Delft University of Technology

Delft, The Netherlands

M.A.Costea@tudelft.nl

ABSTRACT
Property-based testing (PBT) is a valuable technique for assessing

software correctness, and its adoption differs across contexts. In

this work, we examine how PBT is used in open-source repos-

itories across three languages and four frameworks: Java with

jqwik, Python with Hypothesis, and Rust with proptest and

QuickCheck. Our study reveals that PBT is used to test a variety

of systems and usually verifies one of the following properties:

adherence to a contract, equivalence with an oracle, or expected

behaviour of errors. We found that developers use a combination

of customised generators and post-hoc alterations to control the

property input, and they write non-trivial logic to verify the prop-

erties, often with multiple assertions along various execution paths.

Though these patterns are common across the four environments,

notable differences emerge from the specific tooling support of each

framework and the capabilities of the underlying language. Based

on these similarities and differences, our findings point to potential

research directions aimed at facilitating developer adoption of PBT.

1 INTRODUCTION
Most of today’s developers agree that verifying the correctness

of our software is an essential part of the engineering process —

though how rigorous that verification should be and what tech-

niques should be employed is still up for debate. The most well-

established method for software verification is testing [1], a rel-

atively cheap and time-efficient technique for detecting bugs in

our programs. Its main limitation is its inability to conclusively

prove the absence of bugs in a program [6]. Formal verification

techniques, on the other hand, can prove a program’s correctness

with respect to some specification, but have a notoriously steep

learning curve, and are usually time-consuming to employ [11].

Somewhere between conventional software testing and formal

verification lies property-based testing [4]. Property-based testing

(PBT) involves defining properties that a system under test (SUT)

should satisfy, and then verifying that the property holds for a

large amount of automatically generated input data. The canonical

example of PBT is demonstrated on a reverse function (the SUT),

which takes a list as input, and returns that list in reverse. Two

properties can be tested for this function, each in a separate test:

(1) for all elements x, reverse([x]) is equal to [x]
(2) for all lists xs, reverse(reverse(xs)) is equal to xs

Despite promising to be the “middle road”, PBT does not seem to

be as widely adopted as expected. For example, in Python, the most

wide-spread PBT framework, Hypothesis, is only used by about 4%

of the user base, which is far behind the roughly 50% adoption rate

of pytest, the leading general-purpose testing framework [8]. We

hypothesise that this is because PBT requires significant developer

involvement, and requires a more generalised way of thinking than

normal software testing. Our goal is to determine whether this

hypothesis is supported by data from existing PBT practices.

To this end, our study takes a fresh look at how PBT is used by

analysing existing property-based tests in open-source repositories,

and determining the developer involvement necessary for them. In

the long term, we aim to identify which practices generalise across

programming languages and PBT frameworks (“environments”)

and to gain insights into how the techniques and practices that

work effectively in one environment can be transferred to others.

We make a step towards that goal by answering the following

research question:

RQ How is property-based testing used across different

environments in open-source repositories?

We break this question down into the following sub-questions:

Q1 What is property-based testing used for?

Q1.1 Which systems are tested?

Q1.2 What types of properties are tested?

Q2 How are property-based tests implemented?

Q2.1 How is input generated and controlled?

Q2.2 How are the properties asserted?

By answering these questions, wemake the following contributions:

• a categorisation of the types of properties being written;

• a definition of the anatomy of a property-based test, with
insights into how developers interact with this anatomy

throughout the four environments; and

• a set of follow-up research questions that aim to improve

the writing and comprehension of property-based tests

across all environments.

2 METHODOLOGY
The goal of our work is not to report on the distribution of PBT

practices in open-source repositories, but rather to identify the

https://docs.pytest.org/en/stable/

Sára Juhošová, Harald Toth, Antonios Barotsis, and Andreea Costea

variety of PBT practices being applied. This means that we employ

qualitative analysis techniques which “do not aim to identify the

distribution of characteristic values but rather aim to find most [...]

possible values of a characteristic in the population” [12, p. 3176].

We define this approach below:

Approach: Identify the widest possible variety of PBT

practices in open-source repositories.

To get a wider overview of the usage of PBT in practice, we

analysed the usage of four different PBT frameworks over three

widely used programming languages with different type systems:

(static types) Java → jqwik [JJ]

(dynamic types) Python → hypothesis [PH]

(ownership types) Rust → proptest [RP]

↩→ qickcheck [RQ]

With this selection of environments, we can cover property-based

tests in languages with various type systems and, in the case of Rust,

we can compare between frameworks from the same language.

2.1 Repository Selection
Following the approach defined at the beginning of this section, we

tried to get as wide a sample of tests as possible, while still drawing

from relevant repositories. For each environment, we collected a

total of 60 tests from GitHub by

• identifying “popular”
1
repositories using each framework,

• manually selecting a variety of repositories, and

• randomly selecting up to twelve tests from each repository.

By selecting up to twelve tests, we made sure to get data from at
least five different repositories for each environment.

2.2 Test Analysis
We began the analysis process by assigning each of four computer

science researchers involved in this study with an individual en-

vironment, and having them perform open coding on all tests in

their respective environment. Open coding is “the process of coding

data inductively and comprehensively, with an open mindset, to

enable emergence of information and insights, without looking to

find anything specific in the data” [p. 233][10]. We demonstrate the

result of this process on the synthetic example below:

1 fun test(@ForAll 1 @Positive 2 x 3 : Int 4) {

2 assume x.isOdd() 5

3 let result = sut 6(Tag(x) 7)

4 assert result.isValid() 8

5 }

1generator
2filter
3test input
4type hint

5filtering assumption
6system under test (SUT)
7SUT input
8assertion

After this initial phase, the team met to agree on the emerging

codes and to move into the next phase of data collection, formulat-

ing a shared understanding of the “anatomy” of a property-based

test across the different environments, and defining interesting

1
Determined by a combination of the number of downloads and GitHub stars.

features of a property-based test and recorded them for each test

in the dataset. We did this in multiple passes over the data, since

each pass revealed edge cases and new questions which required

features to be introduced or redefined. For example, we began with

collecting the number of assertions in each test, realised that many

assertions were on different execution paths, and decided to keep a

record of all tests that have “guarded” assertions, i.e., ones that are

only executed if a certain condition is met.

Once we were satisfied with the collected features (described

in our data repository [2]), we sat down together to diagram [3, p.

218–221] with our findings, keeping memos [7] about discovered

relationships between the anatomy and features of the tests.

3 OBSERVATIONS
We analysed a total of 240 tests across 38 repositories. Detailed

information about each repository, including links, is available in

our data repository [2] under an MIT License. The repository also

contains our test dataset, with permalinks and feature annotations

for each analysed test. We use examples from our dataset through-

out this section, denoted as [JJ14] to refer to test 14 in the data

repository from Java/jqwik
2
.

3.1 What is property-based testing used for?
To understand what PBT is used for, we aim to identify the types

of SUTs being tested and the properties being checked. In each

repository we analysed, the property-based tests account for less

than 1% of the total tests.

Q1.1:Which systems are tested?

To identify the system under test in each property-based test, we

used a few heuristics, including the structure of the test, the names

of the variables in the test, or even the title of the test itself. Despite

these helpers, it was still often difficult to pinpoint the precise SUT.

Our analysis yielded the following types of systems under test:

→ standalone functions, (parse_f64(..) in [RP3]);

→ composed functions, (deserialize(serialize(..)) in [JJ35]);

→ mutating functions, (dt.replace(..) in [PH12]);

→ data structures, (IndexMap in [RQ1]); and

→ entire components, (Cluster in [JJ11]).

Q1.2:What types of properties are tested?

The tests we encountered can be divided into three categories:

(1) those that verify that an SUT adheres to certain contracts,

(2) those that compare the SUT to some oracle, and

(3) those that define error and error recovery expectations.

(1) Contracts. Property-based tests that verify whether a SUT hon-

ours its contracts were the most common type of test in our dataset.

We take the definition of contracts from the design-by-contract

programming paradigm [13], where a PostCondition expresses

properties that are ensured by the SUT if certain preconditions are

met by the input [RP1]:

2
In digital form, clicking these references will lead to the implementation on GitHub.

https://jqwik.net/
https://hypothesis.readthedocs.io/
https://proptest-rs.github.io/proptest/
https://docs.rs/quickcheck/latest/quickcheck/
https://github.com
https://github.com/crate/crate/blob/2fc93ccbc6be8c1126036d74998f55036c3bc0b7/server/src/test/java/io/crate/statistics/ColumnStatsTest.java#L53-L63
https://github.com/rust-bakery/nom/blob/a44b52ed9052a66f5eb2add9aa5b314f034dc580/src/number/complete.rs#L1960-L1969
https://github.com/Consensys/teku/blob/fe4988bb8e04917617cc00e63d53c0b3c8a38968/storage/src/property-test/java/tech/pegasys/teku/storage/server/kvstore/serialization/SignedBeaconBlockSerializerPropertyTest.java#L27-L38
https://github.com/python/cpython/blob/483d130e504f63aaf3afe8af3a37650edcdb07a3/Lib/test/test_zoneinfo/test_zoneinfo_property.py#L110-L128
https://github.com/indexmap-rs/indexmap/blob/1818d4140d86aeef18c515f1b060a3fa68da2708/tests/quick.rs#L85-L92
https://github.com/apache/kafka/blob/d226b435972c2b0bac99668c17fa8942a1d431bf/raft/src/test/java/org/apache/kafka/raft/RaftEventSimulationTest.java#L174-L205
https://github.com/tokio-rs/tokio/blob/1ea9ce11d4317d767136d489041548408348be77/tokio/src/runtime/metrics/histogram/h2_histogram.rs#L335-L359

Property-Based Testing Across Four Environments in Open-Source Repositories

term definition component of test in Section 2.2

(1) test data the data with which a PBT’s parameters are instantiated (if a PBT has multiple parameters,

“test data” refers to all of them as a tuple)

x

test domain the set of all test data with which a PBT can be instantiated all positive Ints
generator a function which produces the test domain (every PBT with parameters has a generator) @ForAll Int

custom generator a generator which requires intervention from the developer (i.e., is not what the framework

automatically provides by default)

@ForAll @Positive Int

(2) post-hoc filter a condition based on the test data which interrupts the execution of a test before the call

to the SUT (used in the body of the test)

x.isOdd()

SUT input the data that is passed as input into the SUT Tag(x)
property domain the set of all inputs that can be passed to the SUT for the property under test to hold @ForAll x: Int. Tag(x)

post-hoc constructor a function from the test domain to the property domain (used in the body of the test) Tag

(3) SUT the system under test sut(...)

(4) assertion the component that causes a PBT to fail if (a part of) the property is not satisfied result.isValid()

Table 1: Components of a PBT defined before the test is initialised (1), and before (2) and after (4) the call to the SUT (3).

1 assert sut(x) >= 0

The most commonly-occurring contract pattern in our dataset

(as well as in Java/jqwik and Rust/proptest separately) was

RoundTrip [RP46]. This contract dictates that when a function and

its inverse are applied to an input, the result should be equal to the

original input:

1 assert sutI(sut(x)) == x

An intuitive example of such a function pair is encode and decode [JJ51],
or the reverse function from the introduction and itself.

A popular contract pattern, especially in Java/jqwik, was Mu-

tation, which verified that an object was mutated correctly [RQ2]:

1 list.add(x)
2 assert list.contains(x)

The tests that we encountered with this pattern could often be

considered to be checking an object’s Invariant [PH29]:

1 assert list.size() <= list.capacity

Finally, a contract pattern we noted mainly in Python/Hypoth-

esis was FunctionProperty. These tests verified that a function

satisfies certain mathematical properties, e.g., additivity [PH4]:

1 assert sut(x) + sut(y) == sut(x + y)

(2) Oracles. Test oracles can be used as a sort of reference imple-

mentation, to which the SUT can compare all of its outputs:

1 assert sut(x) == oracle(x)

This can, for example, be useful when comparing a new, optimised

version to a trusted version of some algorithm. We encountered

tests which used different libraries as oracles [PH18] or compared

two custom implementations to each other [RQ35], but also ones

which were implemented within the test itself [PH13]. Usually, this

was done when the expected output could be trivially computed,

or could branch out into only a few cases:

1 assert sut(x) == (2 * x) + 18

(3) Errors. About 10% of the tests we analysed contained asser-

tions about error-related behaviour. These tests either verified that

an error was or was not thrown [RQ5] or made sure that a program

could recover from an error [JJ12]:

1 assert sut(x) throws SUTException
2 assert sut(y) !throws SUTException

3.2 How are property-based tests implemented?
We identified four categories of PBT components

3
in open-source

repositories, which we call the anatomy of a property-based test:

(1) those that act before the test is initialised,

(2) those that act before the call to the SUT,

(3) the system under test (SUT) itself, and

(4) those that act after the call to the SUT.

A list of these components, along with their definitions, is presented

in Table 1, with references to examples from our tests in Section 2.2.

During our analysis, we observed several aspects related to the

implementation of the analysed tests, summarised as follows:

O1 Developers implement non-trivial testing logic. Many of the tests

we analysed went far beyond textbook examples, and contained,

for example, a custom input generator for filtering or data con-

struction [JJ24], an involved test oracle implementation [RP31],

or properties that span numerous assertions [PH11].

O2 Components exhibit limited modular separation. The definition of
the property domain is often conflated with the implementation

of the test logic [PH41], and assertions are often conditioned

on either the test data or the SUT’s output [PH3].

O3 The tests are not always easily comprehensible. Regardless of the
environment, we found that tests adhering to a clean, textbook

structure are easy to comprehend. However, many of the tests

we analysed use complex setups or assertion logic, making it

difficult to distinguish between pre- and post-conditions, to

identify which values flow into the SUT, or even to determine

what the SUT precisely was [RP2].

Additionally, we noticed that Rust/QuickCheck was the most

“minimalist” environment with respect to implementation. We hy-

pothesise that this is because it is a port of the originalQuickCheck

3
Any distinct part of a test that plays a specific role in the test’s execution or setup.

https://github.com/tokio-rs/prost/blob/bdd03fcb8dbe514a3bc2ecfbc7cb8f335d21436c/prost-types/src/datetime.rs#L953-L964
https://github.com/googleapis/java-storage/blob/0e348dbee247e1e65713d0155e1aa29ae5c5e0e4/google-cloud-storage/src/test/java/com/google/cloud/storage/BlobIdPropertyTest.java#L35-L42
https://github.com/indexmap-rs/indexmap/blob/1818d4140d86aeef18c515f1b060a3fa68da2708/tests/quick.rs#L107-L114
https://github.com/streamlit/streamlit/blob/3c99f2051644fd942844d0014540911afeea36bc/lib/tests/streamlit/runtime/state/session_state_test.py#L892-L898
https://github.com/python/cpython/blob/483d130e504f63aaf3afe8af3a37650edcdb07a3/Lib/test/test_math_property.py#L29-L41
https://github.com/pandas-dev/pandas/blob/f496acffccfc08f30f8392894a8e0c56d404ef87/pandas/tests/scalar/timedelta/test_timedelta.py#L587-L609
https://github.com/rust-itertools/itertools/blob/b0942d6b84d47dec75c19e541859211423d857d9/tests/test_std.rs#L496-L530
https://github.com/pandas-dev/pandas/blob/f496acffccfc08f30f8392894a8e0c56d404ef87/pandas/tests/indexes/datetimes/test_scalar_compat.py#L439-L451
https://github.com/indexmap-rs/indexmap/blob/1818d4140d86aeef18c515f1b060a3fa68da2708/tests/quick.rs#L168-L192
https://github.com/apache/kafka/blob/d226b435972c2b0bac99668c17fa8942a1d431bf/raft/src/test/java/org/apache/kafka/raft/RaftEventSimulationTest.java#L207-L237
https://github.com/aeron-io/simple-binary-encoding/blob/beea0b2cd0ce83e3a24262ba8f37f9d945be5c72/sbe-tool/src/propertyTest/java/uk/co/real_logic/sbe/properties/DtosPropertyTest.java#L192-L247
https://github.com/hawkw/sharded-slab/blob/e540cdb7daafd6a6e9d17408d3de017029a6637f/src/tests/properties.rs#L218-L221
https://github.com/python/cpython/blob/483d130e504f63aaf3afe8af3a37650edcdb07a3/Lib/test/test_zoneinfo/test_zoneinfo_property.py#L182-L204
https://github.com/jax-ml/jax/blob/e2b70767a6c26774b4275b64d9c262dfdd2a7031/tests/pallas/tpu_splash_attention_kernel_test.py#L489-L565
https://github.com/python/cpython/blob/483d130e504f63aaf3afe8af3a37650edcdb07a3/Lib/test/test_binascii.py#L483-L490
https://github.com/tokio-rs/tokio/blob/1ea9ce11d4317d767136d489041548408348be77/tokio/src/runtime/metrics/histogram/h2_histogram.rs#L361-L419

Sára Juhošová, Harald Toth, Antonios Barotsis, and Andreea Costea

framework for Haskell, which emphasises simplicity and minimal

boilerplate [4]. Additionally, Rust has the richest type system and

can thus provide the most default information to a generator.

Q2.1: How is input generated and controlled?

Though most frameworks we examined offer extensive default

generator strategies, almost all the tests we analysed had some

form of developer intervention in the property domain creation.

Customisation of default generators was fairly common, and typi-

cally involved implementing a separate generator or composing a

default generator with additional filters or construction.

What was interesting though, is that despite custom generators

already deviating from the default, the test domain and the property
domain often differed. We tracked how data flowed from the test

input up to the SUT call, and noticed that, across all environments,

developers often implement post-hoc alterations to change the

values that flow into the SUT.

Post-hoc constructors transform test inputs into ones that can

be consumed by the SUT, and are commonly defined across all

environments. For example, [JJ40] generates a normal double and

builds a AtomicDouble, and [RQ4] generates a list and then loops

through it to populate a map.

Post-hoc filterswere used to ensure that a property’s pre-condition
was met by the generated inputs. This was done by using the frame-

work’s built-in way to discard the test [RQ17], making the test

pass by default [RQ42], or modifying the input to match the pre-

condition [RQ40]. Interesting cases of post-hoc filters included one

that could only be applied after the call to the SUT [RQ50] and one

which called an auxiliary function which had a post-hoc filter with

the same condition as was in the custom generator [RP15]. The tests

we analysed for Java/jqwik used notably less post-hoc filtering.

Q2.2: How are the properties asserted?

We encountered a large variety of complexity in how properties

were asserted. While some tests had only a single assertion that

captured the entire property [JJ34], many used a combination of as-

sertions — sometimes to verify a combination of properties [RP34].

These assertions were on the same execution path [JJ37], guarded

behind conditions based on the test input [PH58] or the SUT out-

put [RQ5], hidden in auxiliary functions [PH14], or repeated many

times in a loop [RP2]. Python/Hypothesis even used assertions

for type checking [PH44].

Although auxiliary functions supporting assertion checking

were found across all environments, they appeared most frequently

in Python/Hypothesis tests. For instance, in the NumPy library,

developers implemented helper functions such as arrayAllClose
to compare two array-like objects for structural and element-wise

equality within a given relative or absolute tolerance [PH44]. These

auxiliary functions were often reused throughout the testing code.

We hypothesise that some of these functions are necessary due to

the lack of static types in Python.

Depending on the framework, assertions were implemented with

an explicit assertion [JJ50], as a boolean expression to be returned

from the test [RQ26][JJ17], or as an assertion error thrown if a

condition was not met [JJ20]. Some tests even used a combination

of these, making it more difficult to comprehend the test logic [RQ6].

4 THREATS TO VALIDITY
Because we are using qualitative research methods, our own ex-

perience with PBT had likely made its way into the interpretation

of the dataset. To reduce the likelihood of a misinterpretation that

would pose a threat to the validity of our results, we cross-checked

every feature label between at least two researchers, and discussed

any discrepancies until we reached agreement.

Additionally, due to our test selection strategy, our dataset is

largely biased towards tests from popular open-source repositories.

While the data aligns with our approach to identify the widest possi-

ble variety of PBT practices, we cannot generalise any distributions

of these practices to a wider selection of tests. Future work could

select a subset of the features we examined, and replicate the study

with stratified or random sampling to provide such information.

5 RELATEDWORK
Unlike this work, which studies patterns across multiple environ-

ments, most existing studies focus on PBT within a single one.

Etna [15] is the exception, providing an evaluation platform for

PBT approaches in both Coq and Haskell. Most other existing stud-

ies focus on Python’s Hypothesis:

Tyche [9] is used to study how developers interact with the frame-

work when offered visual feedback on their tests’ effectiveness;

Corgozinho et al. [5] identifies the most commonly implemented

properties and the features used to construct them;

Ravi and Coblenz [14] conducted a larger-scale empirical analysis

which refines this property taxonomy and concludes that prop-

erties related to exception-raising, inclusion, and type checking

are most effective at detecting bugs; and

Wauters and De Roove [16] analyse the challenges that develop-

ers face when using PBT for machine learning projects.

Finally, Goldstein et al.’s [8] interviews with OCaml developers

reveal common challenges in writing property-based tests and

show that developers prefer using PBT in “high-leverage” situations

where it offers clear benefits over conventional unit testing.

6 CONCLUSION & FUTUREWORK
We found that PBT is used to test a large variety of systems, from

standalone functions to entire components, and verifies three types

of properties: adherence to a contract, equivalence with an oracle,

and expected error behaviour. Developers combine customised

generators with post-hoc alterations to control the property domain

of their tests, and theywrite non-trivial logic to verify the properties,

often with multiple assertions along various execution paths. Our

preliminary results lead to these follow-up research questions:

• How do language features influence PBT framework design

and the comprehension of property-based tests?

• What are the benefits and limitations of having a test do-

main that is different from the property domain?

• How does post-hoc alteration affect the effectiveness of a

property-based test?

https://github.com/neo4j/graph-data-science/blob/b5be915f798bfbf873ef1870bfb2b5499d5d929b/concurrency/src/test/java/org/neo4j/gds/core/concurrency/AtomicDoubleTest.java#L136-L144
https://github.com/indexmap-rs/indexmap/blob/1818d4140d86aeef18c515f1b060a3fa68da2708/tests/quick.rs#L133-L146
https://github.com/time-rs/time/blob/47dab23e40bffc08373e8de7aa487938cb2c1b58/tests/quickcheck.rs#L70-L84
https://github.com/BurntSushi/memchr/blob/ceef3c921b5685847ea39647b6361033dfe1aa36/src/arch/all/twoway.rs#L845-L853
https://github.com/rust-itertools/itertools/blob/b0942d6b84d47dec75c19e541859211423d857d9/tests/quick.rs#L1492-L1513
https://github.com/BurntSushi/memchr/blob/ceef3c921b5685847ea39647b6361033dfe1aa36/src/tests/memchr/prop.rs#L44-L51
https://github.com/tokio-rs/prost/blob/bdd03fcb8dbe514a3bc2ecfbc7cb8f335d21436c/prost/src/encoding.rs#L462-L467
https://github.com/Consensys/teku/blob/fe4988bb8e04917617cc00e63d53c0b3c8a38968/networking/p2p/src/property-test/java/tech/pegasys/teku/networking/p2p/SecretKeyParserPropertyTest.java#L33-L39
https://github.com/rust-cli/anstyle/blob/2c10c471beb3a509f3b9241180e7239cc3ea176a/crates/anstream/src/strip.rs#L197-L209
https://github.com/neo4j/graph-data-science/blob/b5be915f798bfbf873ef1870bfb2b5499d5d929b/concurrency/src/test/java/org/neo4j/gds/core/concurrency/AtomicDoubleTest.java#L33-L41
https://github.com/numpy/numpy/blob/0e7139d253f400fcb68854f357ea507017ffffa4/numpy/lib/tests/test_function_base.py#L4162-L4178
https://github.com/indexmap-rs/indexmap/blob/1818d4140d86aeef18c515f1b060a3fa68da2708/tests/quick.rs#L168-L192
https://github.com/pandas-dev/pandas/blob/f496acffccfc08f30f8392894a8e0c56d404ef87/pandas/tests/indexes/ranges/test_setops.py#L462-L493
https://github.com/tokio-rs/tokio/blob/1ea9ce11d4317d767136d489041548408348be77/tokio/src/runtime/metrics/histogram/h2_histogram.rs#L361-L419
https://github.com/jax-ml/jax/blob/e2b70767a6c26774b4275b64d9c262dfdd2a7031/tests/state_test.py#L1005-L1048
https://github.com/jax-ml/jax/blob/e2b70767a6c26774b4275b64d9c262dfdd2a7031/tests/state_test.py#L1005-L1048
https://github.com/googleapis/java-storage/blob/10cd32d51aa061304b5b4d0d632a2eed694cd1d6/google-cloud-storage/src/test/java/com/google/cloud/storage/BaseConvertablePropertyTest.java#L92-L105
https://github.com/rust-lang/regex/blob/1a069b9232c607b34c4937122361aa075ef573fa/regex-automata/src/util/determinize/state.rs#L823-L835
https://github.com/EngineHub/WorldEdit/blob/7392d9ccd14562f0976d749f53615af2fe79b27f/worldedit-core/src/test/java/com/sk89q/worldedit/util/SideEffectSetTest.java#L47-L55
https://github.com/aeron-io/simple-binary-encoding/blob/beea0b2cd0ce83e3a24262ba8f37f9d945be5c72/sbe-tool/src/propertyTest/java/uk/co/real_logic/sbe/properties/JsonPropertyTest.java#L34-L52
https://github.com/indexmap-rs/indexmap/blob/1818d4140d86aeef18c515f1b060a3fa68da2708/tests/quick.rs#L216-L235

Property-Based Testing Across Four Environments in Open-Source Repositories

• Which PBT design choices lead to a more “ergonomic” way

of writing property-based tests?

We believe that by investigating these questions, we can improve

the effectiveness and usability of PBT across all environments.

ACKNOWLEDGMENTS
This paper is based on the work of Antonios Barotsis, Max Derben-

wick, David de Koning, and Ye Zhao, conducted in partial fulfillment

of the requirements for their Bachelor of Science degree in Com-

puter Science and Engineering at the Delft University of Technology

in June 2025. Their works are available online in the university’s

repository.

REFERENCES
[1] Maurício Aniche. 2022. Effective Software Testing: A developer’s guide. Manning.

[2] Antonios Barotsis, Harald Toth, Sára Juhošová, and Andreea Costea. 2025.

Property-Based Testing Across Different Environments in Open Source Reposi-

tories. https://doi.org/10.4121/08ecb1c5-fb8a-4a3d-8c91-a96bc7f28ec7

[3] Kathy Charmaz. 2014. Constructing Grounded Theory (2 ed.). Sage Publications.

[4] Koen Claessen and John Hughes. 2000. QuickCheck: a lightweight tool for

random testing of Haskell programs. In International Conference on Functional
Programming (ICFP). ACM, 268–279. https://doi.org/10.1145/351240.351266

[5] Arthur Lisboa Corgozinho, Marco Tulio Valente, and Henrique Rocha. 2023.

How Developers Implement Property-Based Tests. In International Conference
on Software Maintenance and Evolution (ICSME). IEEE, 380–384. https://doi.org/

10.1109/ICSME58846.2023.00049 ISSN: 2576-3148.

[6] Edsger W. Dijkstra. 1972. The humble programmer. Commun. ACM 15, 10 (1972),

859–866. https://doi.org/10.1145/355604.361591

[7] Barney G. Glaser. 1978. Theoretical sensitivity: Advances in the methodology of
grounded theory. Sociology Press.

[8] Harrison Goldstein, Joseph W. Cutler, Daniel Dickstein, Benjamin C. Pierce,

and Andrew Head. 2024. Property-Based Testing in Practice. In International
Conference on Software Engineering. ACM, 1–13. https://doi.org/10.1145/3597503.

3639581

[9] Harrison Goldstein, Jeffrey Tao, Zac Hatfield-Dodds, Benjamin C. Pierce, and

Andrew Head. 2024. Tyche: Making Sense of PBT Effectiveness. In Symposium
on User Interface Software and Technology (UIST ’24). ACM, 1–16. https://doi.

org/10.1145/3654777.3676407

[10] Rashina Hoda. 2024. Qualitative Research with Socio-Technical Grounded Theory:
A Practical Guide to Qualitative Data Analysis and Theory Development in the
Digital World. Springer Cham. https://doi.org/10.1007/978-3-031-60533-8

[11] Sára Juhošová, Andy Zaidman, and Jesper Cockx. 2025. Pinpointing the Learning

Obstacles of an Interactive Theorem Prover. In International Conference on Pro-
gram Comprehension (ICPC). IEEE, 159–170. https://doi.org/10.1109/ICPC66645.

2025.00024

[12] Jorge Melegati, Kieran Conboy, and Daniel Graziotin. 2024. Qualitative Surveys

in Software Engineering Research: Definition, Critical Review, and Guidelines.

IEEE Transactions on Software Engineering 50, 12 (Dec. 2024), 3172–3187. https:

//doi.org/10.1109/TSE.2024.3474173

[13] Bertrand Meyer. 1992. Applying ‘design by contract’. Computer 25, 10 (1992),
40–51. https://doi.org/10.1109/2.161279

[14] Savitha Ravi and Michael Coblenz. 2025. An Empirical Evaluation of Property-

Based Testing in Python. 9, OOPSLA2 (2025), 412:3897–412:3923. https://doi.

org/10.1145/3764068

[15] Jessica Shi, Alperen Keles, Harrison Goldstein, Benjamin C. Pierce, and Leonidas

Lampropoulos. 2023. Etna: An Evaluation Platform for Property-Based Testing

(Experience Report). 7, ICFP (2023), 218:878–218:894. https://doi.org/10.1145/

3607860

[16] Cindy Wauters and Coen De Roover. 2024. Property-based Testing within ML

Projects: an Empirical Study. In International Conference on Software Maintenance
and Evolution (ICSME). 648–653. https://doi.org/10.1109/ICSME58944.2024.00067

ISSN: 2576-3148.

https://repository.tudelft.nl/search?search_term=Juho%C5%A1ov%C3%A1+Costeea&record_type=bachelor_thesis&year_from=2025
https://repository.tudelft.nl/search?search_term=Juho%C5%A1ov%C3%A1+Costeea&record_type=bachelor_thesis&year_from=2025
https://doi.org/10.4121/08ecb1c5-fb8a-4a3d-8c91-a96bc7f28ec7
https://doi.org/10.1145/351240.351266
https://doi.org/10.1109/ICSME58846.2023.00049
https://doi.org/10.1109/ICSME58846.2023.00049
https://doi.org/10.1145/355604.361591
https://doi.org/10.1145/3597503.3639581
https://doi.org/10.1145/3597503.3639581
https://doi.org/10.1145/3654777.3676407
https://doi.org/10.1145/3654777.3676407
https://doi.org/10.1007/978-3-031-60533-8
https://doi.org/10.1109/ICPC66645.2025.00024
https://doi.org/10.1109/ICPC66645.2025.00024
https://doi.org/10.1109/TSE.2024.3474173
https://doi.org/10.1109/TSE.2024.3474173
https://doi.org/10.1109/2.161279
https://doi.org/10.1145/3764068
https://doi.org/10.1145/3764068
https://doi.org/10.1145/3607860
https://doi.org/10.1145/3607860
https://doi.org/10.1109/ICSME58944.2024.00067

	Abstract
	1 Introduction
	2 Methodology
	2.1 Repository Selection
	2.2 Test Analysis

	3 Observations
	3.1 What is property-based testing used for?
	3.2 How are property-based tests implemented?

	4 Threats to Validity
	5 Related Work
	6 Conclusion & Future Work
	References

