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ABSTRACT

Property-based testing (PBT) is a valuable technique for assessing
software correctness, and its adoption differs across contexts. In
this work, we examine how PBT is used in open-source repos-
itories across three languages and four frameworks: Java with
JOwIK, Python with HypoTHESIs, and Rust with PROPTEST and
QuickCHECK. Our study reveals that PBT is used to test a variety
of systems and usually verifies one of the following properties:
adherence to a contract, equivalence with an oracle, or expected
behaviour of errors. We found that developers use a combination
of customised generators and post-hoc alterations to control the
property input, and they write non-trivial logic to verify the prop-
erties, often with multiple assertions along various execution paths.
Though these patterns are common across the four environments,
notable differences emerge from the specific tooling support of each
framework and the capabilities of the underlying language. Based
on these similarities and differences, our findings point to potential
research directions aimed at facilitating developer adoption of PBT.

1 INTRODUCTION

Most of today’s developers agree that verifying the correctness
of our software is an essential part of the engineering process —
though how rigorous that verification should be and what tech-
niques should be employed is still up for debate. The most well-
established method for software verification is testing [1], a rel-
atively cheap and time-efficient technique for detecting bugs in
our programs. Its main limitation is its inability to conclusively
prove the absence of bugs in a program [6]. Formal verification
techniques, on the other hand, can prove a program’s correctness
with respect to some specification, but have a notoriously steep
learning curve, and are usually time-consuming to employ [11].
Somewhere between conventional software testing and formal
verification lies property-based testing [4]. Property-based testing
(PBT) involves defining properties that a system under test (SUT)
should satisfy, and then verifying that the property holds for a
large amount of automatically generated input data. The canonical
example of PBT is demonstrated on a reverse function (the SUT),
which takes a list as input, and returns that list in reverse. Two
properties can be tested for this function, each in a separate test:

(1) for all elements x, reverse([x]) is equal to [x]
(2) for all lists xs, reverse(reverse(xs)) is equal to xs
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Despite promising to be the “middle road”, PBT does not seem to
be as widely adopted as expected. For example, in Python, the most
wide-spread PBT framework, HYPOTHESIS, is only used by about 4%
of the user base, which is far behind the roughly 50% adoption rate
of PYTEST, the leading general-purpose testing framework [8]. We
hypothesise that this is because PBT requires significant developer
involvement, and requires a more generalised way of thinking than
normal software testing. Our goal is to determine whether this
hypothesis is supported by data from existing PBT practices.

To this end, our study takes a fresh look at how PBT is used by
analysing existing property-based tests in open-source repositories,
and determining the developer involvement necessary for them. In
the long term, we aim to identify which practices generalise across
programming languages and PBT frameworks (“environments”)
and to gain insights into how the techniques and practices that
work effectively in one environment can be transferred to others.
We make a step towards that goal by answering the following
research question:

RQ How is property-based testing used across different
environments in open-source repositories?

We break this question down into the following sub-questions:

Q1 What is property-based testing used for?
Q1.1 Which systems are tested?
Q1.2 What types of properties are tested?
Q2 How are property-based tests implemented?
Q2.1 How is input generated and controlled?
Q2.2 How are the properties asserted?

By answering these questions, we make the following contributions:

e a categorisation of the types of properties being written;

o a definition of the anatomy of a property-based test, with
insights into how developers interact with this anatomy
throughout the four environments; and

o a set of follow-up research questions that aim to improve
the writing and comprehension of property-based tests
across all environments.

2 METHODOLOGY

The goal of our work is not to report on the distribution of PBT
practices in open-source repositories, but rather to identify the


https://docs.pytest.org/en/stable/

variety of PBT practices being applied. This means that we employ
qualitative analysis techniques which “do not aim to identify the
distribution of characteristic values but rather aim to find most [...]
possible values of a characteristic in the population” [12, p. 3176].
We define this approach below:

Approach: Identify the widest possible variety of PBT
practices in open-source repositories.

To get a wider overview of the usage of PBT in practice, we
analysed the usage of four different PBT frameworks over three
widely used programming languages with different type systems:

(static types) Java —»  JQWIK [
(dynamic types) Python — HYPOTHESIs [PH]
(ownership types) Rust —» PROPTEST [RP]
<> QUICKCHECK [RQ]
With this selection of environments, we can cover property-based
tests in languages with various type systems and, in the case of Rust,
we can compare between frameworks from the same language.

2.1 Repository Selection

Following the approach defined at the beginning of this section, we
tried to get as wide a sample of tests as possible, while still drawing
from relevant repositories. For each environment, we collected a
total of 60 tests from GitHub by

e identifying “popular”! repositories using each framework,

e manually selecting a variety of repositories, and

o randomly selecting up to twelve tests from each repository.

By selecting up to twelve tests, we made sure to get data from at
least five different repositories for each environment.

2.2 Test Analysis

We began the analysis process by assigning each of four computer
science researchers involved in this study with an individual en-
vironment, and having them perform open coding on all tests in
their respective environment. Open coding is “the process of coding
data inductively and comprehensively, with an open mindset, to
enable emergence of information and insights, without looking to
find anything specific in the data” [p. 233][10]. We demonstrate the
result of this process on the synthetic example below:

[ 1
1| fun test(|@ForAll ' @Positive 2 x 3 : Int*) { |
2| assume | x.is0dd() ° |
3| let result = sut %( Tag(x) ) |
4 | assert result.isValid() @ |
12 |

lgenerator 5filtering assumption
2filter Ssystem under test (SUT)
3test input 7SUT input

4type hint 8assertion

After this initial phase, the team met to agree on the emerging
codes and to move into the next phase of data collection, formulat-
ing a shared understanding of the “anatomy” of a property-based
test across the different environments, and defining interesting

!Determined by a combination of the number of downloads and GitHub stars.
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features of a property-based test and recorded them for each test
in the dataset. We did this in multiple passes over the data, since
each pass revealed edge cases and new questions which required
features to be introduced or redefined. For example, we began with
collecting the number of assertions in each test, realised that many
assertions were on different execution paths, and decided to keep a
record of all tests that have “guarded” assertions, i.e., ones that are
only executed if a certain condition is met.

Once we were satisfied with the collected features (described
in our data repository [2]), we sat down together to diagram [3, p.
218-221] with our findings, keeping memos [7] about discovered
relationships between the anatomy and features of the tests.

3 OBSERVATIONS

We analysed a total of 240 tests across 38 repositories. Detailed
information about each repository, including links, is available in
our data repository [2] under an MIT License. The repository also
contains our test dataset, with permalinks and feature annotations
for each analysed test. We use examples from our dataset through-
out this section, denoted as [JJ14] to refer to test 14 in the data

repository from JAVA/JQWIK?.

3.1 What is property-based testing used for?

To understand what PBT is used for, we aim to identify the types
of SUTs being tested and the properties being checked. In each
repository we analysed, the property-based tests account for less
than 1% of the total tests.

Q1.1: Which systems are tested?

To identify the system under test in each property-based test, we
used a few heuristics, including the structure of the test, the names
of the variables in the test, or even the title of the test itself. Despite
these helpers, it was still often difficult to pinpoint the precise SUT.
Our analysis yielded the following types of systems under test:

standalone functions, (parse_f64(..) in [RP3]);

composed functions, (deserialize(serialize(..)) in [JJ35]);
mutating functions, (dt.replace(..) in [PH12]);

data structures, (IndexMap in [RQ1]); and

entire components, (Cluster in [JJ11]).

A

Q1.2: What types of properties are tested?

The tests we encountered can be divided into three categories:

(1) those that verify that an SUT adheres to certain contracts,
(2) those that compare the SUT to some oracle, and
(3) those that define error and error recovery expectations.

(1) Contracts. Property-based tests that verify whether a SUT hon-
ours its contracts were the most common type of test in our dataset.
We take the definition of contracts from the design-by-contract
programming paradigm [13], where a PosTCONDITION expresses
properties that are ensured by the SUT if certain preconditions are
met by the input [RP1]:

%In digital form, clicking these references will lead to the implementation on GitHub.


https://jqwik.net/
https://hypothesis.readthedocs.io/
https://proptest-rs.github.io/proptest/
https://docs.rs/quickcheck/latest/quickcheck/
https://github.com
https://github.com/crate/crate/blob/2fc93ccbc6be8c1126036d74998f55036c3bc0b7/server/src/test/java/io/crate/statistics/ColumnStatsTest.java#L53-L63
https://github.com/rust-bakery/nom/blob/a44b52ed9052a66f5eb2add9aa5b314f034dc580/src/number/complete.rs#L1960-L1969
https://github.com/Consensys/teku/blob/fe4988bb8e04917617cc00e63d53c0b3c8a38968/storage/src/property-test/java/tech/pegasys/teku/storage/server/kvstore/serialization/SignedBeaconBlockSerializerPropertyTest.java#L27-L38
https://github.com/python/cpython/blob/483d130e504f63aaf3afe8af3a37650edcdb07a3/Lib/test/test_zoneinfo/test_zoneinfo_property.py#L110-L128
https://github.com/indexmap-rs/indexmap/blob/1818d4140d86aeef18c515f1b060a3fa68da2708/tests/quick.rs#L85-L92
https://github.com/apache/kafka/blob/d226b435972c2b0bac99668c17fa8942a1d431bf/raft/src/test/java/org/apache/kafka/raft/RaftEventSimulationTest.java#L174-L205
https://github.com/tokio-rs/tokio/blob/1ea9ce11d4317d767136d489041548408348be77/tokio/src/runtime/metrics/histogram/h2_histogram.rs#L335-L359
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term

definition

component of test in Section 2.2

(1) test data

test domain
generator
custom generator

the data with which a PBT’s parameters are instantiated (if a PBT has multiple parameters,

“test data” refers to all of them as a tuple)

the set of all test data with which a PBT can be instantiated

a function which produces the test domain (every PBT with parameters has a generator)
a generator which requires intervention from the developer (i.e., is not what the framework
automatically provides by default)

X

all positive Ints
@ForAll Int
@ForAll @Positive Int

(2) post-hoc filter

SUT input
property domain
post-hoc constructor

a condition based on the test data which interrupts the execution of a test before the call
to the SUT (used in the body of the test)

the data that is passed as input into the SUT

the set of all inputs that can be passed to the SUT for the property under test to hold

a function from the test domain to the property domain (used in the body of the test)

X.1s0dd()

Tag(x)
@ForAll x: Int. Tag(x)
Tag

3) SUT the system under test

sut(...)

(4) assertion

the component that causes a PBT to fail if (a part of) the property is not satisfied

result.isValid()

Table 1: Components of a PBT defined before the test is initialised (1), and before (2) and after (4) the call to the SUT (3).

1 assert sut(x) >= 0

The most commonly-occurring contract pattern in our dataset
(as well as in Java/jowik and RUST/PROPTEST separately) was
RounDTRIP [RP46]. This contract dictates that when a function and
its inverse are applied to an input, the result should be equal to the
original input:

1 assert sutI(sut(x)) == x

An intuitive example of such a function pair is encode and decode [JJ51],

or the reverse function from the introduction and itself.
A popular contract pattern, especially in Java/jowiIk, was Mu-
TATION, which verified that an object was mutated correctly [RQ2]:

1 list.add(x)
2 assert list.contains(x)

The tests that we encountered with this pattern could often be
considered to be checking an object’s INVARIANT [PH29]:

1 assert list.size() <= list.capacity

Finally, a contract pattern we noted mainly in PyTHON/HYPOTH-
EsIS was FUNCTIONPROPERTY. These tests verified that a function
satisfies certain mathematical properties, e.g., additivity [PH4]:

1 assert sut(x) + sut(y) == sut(x + y)

(2) ORrAcLEs. Test oracles can be used as a sort of reference imple-
mentation, to which the SUT can compare all of its outputs:

1 assert sut(x) == oracle(x)

This can, for example, be useful when comparing a new, optimised
version to a trusted version of some algorithm. We encountered
tests which used different libraries as oracles [PH18] or compared
two custom implementations to each other [RQ35], but also ones
which were implemented within the test itself [PH13]. Usually, this
was done when the expected output could be trivially computed,
or could branch out into only a few cases:

1 assert sut(x) == (2 * x) + 18

(3) Errors. About 10% of the tests we analysed contained asser-
tions about error-related behaviour. These tests either verified that
an error was or was not thrown [RQ5] or made sure that a program
could recover from an error [JJ12]:

1 assert sut(x) throws SUTException
2 assert sut(y) !throws SUTException

3.2 How are property-based tests implemented?

We identified four categories of PBT components® in open-source
repositories, which we call the anatomy of a property-based test:

(1) those that act before the test is initialised,
(2) those that act before the call to the SUT,
(3) the system under test (SUT) itself, and
(4) those that act after the call to the SUT.

A list of these components, along with their definitions, is presented

in Table 1, with references to examples from our tests in Section 2.2.
During our analysis, we observed several aspects related to the

implementation of the analysed tests, summarised as follows:

O1 Developers implement non-trivial testing logic. Many of the tests
we analysed went far beyond textbook examples, and contained,
for example, a custom input generator for filtering or data con-
struction [JJ24], an involved test oracle implementation [RP31],
or properties that span numerous assertions [PH11].

02 Components exhibit limited modular separation. The definition of
the property domain is often conflated with the implementation
of the test logic [PH41], and assertions are often conditioned
on either the test data or the SUT’s output [PH3].

O3 The tests are not always easily comprehensible. Regardless of the
environment, we found that tests adhering to a clean, textbook
structure are easy to comprehend. However, many of the tests
we analysed use complex setups or assertion logic, making it
difficult to distinguish between pre- and post-conditions, to
identify which values flow into the SUT, or even to determine
what the SUT precisely was [RP2].

Additionally, we noticed that RusT/QuickCHECK was the most
“minimalist” environment with respect to implementation. We hy-
pothesise that this is because it is a port of the original QuickCHECK

3Any distinct part of a test that plays a specific role in the test’s execution or setup.


https://github.com/tokio-rs/prost/blob/bdd03fcb8dbe514a3bc2ecfbc7cb8f335d21436c/prost-types/src/datetime.rs#L953-L964
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https://github.com/python/cpython/blob/483d130e504f63aaf3afe8af3a37650edcdb07a3/Lib/test/test_zoneinfo/test_zoneinfo_property.py#L182-L204
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https://github.com/tokio-rs/tokio/blob/1ea9ce11d4317d767136d489041548408348be77/tokio/src/runtime/metrics/histogram/h2_histogram.rs#L361-L419

framework for Haskell, which emphasises simplicity and minimal
boilerplate [4]. Additionally, RusT has the richest type system and
can thus provide the most default information to a generator.

Q2.1: How is input generated and controlled?

Though most frameworks we examined offer extensive default
generator strategies, almost all the tests we analysed had some
form of developer intervention in the property domain creation.
Customisation of default generators was fairly common, and typi-
cally involved implementing a separate generator or composing a
default generator with additional filters or construction.

What was interesting though, is that despite custom generators
already deviating from the default, the test domain and the property
domain often differed. We tracked how data flowed from the test
input up to the SUT call, and noticed that, across all environments,
developers often implement post-hoc alterations to change the
values that flow into the SUT.

Post-hoc constructors transform test inputs into ones that can
be consumed by the SUT, and are commonly defined across all
environments. For example, [JJ40] generates a normal double and
builds a AtomicDouble, and [RQ4] generates a list and then loops
through it to populate a map.

Post-hoc filters were used to ensure that a property’s pre-condition
was met by the generated inputs. This was done by using the frame-
work’s built-in way to discard the test [RQ17], making the test
pass by default [RQ42], or modifying the input to match the pre-
condition [RQ40]. Interesting cases of post-hoc filters included one
that could only be applied after the call to the SUT [RQ50] and one
which called an auxiliary function which had a post-hoc filter with
the same condition as was in the custom generator [RP15]. The tests
we analysed for Java/jQwik used notably less post-hoc filtering.

Q2.2: How are the properties asserted?

We encountered a large variety of complexity in how properties
were asserted. While some tests had only a single assertion that
captured the entire property [JJ34], many used a combination of as-
sertions — sometimes to verify a combination of properties [RP34].
These assertions were on the same execution path [JJ37], guarded
behind conditions based on the test input [PH58] or the SUT out-
put [RQ5], hidden in auxiliary functions [PH14], or repeated many
times in a loop [RP2]. PyTHON/HYPOTHESIS even used assertions
for type checking [PH44].

Although auxiliary functions supporting assertion checking
were found across all environments, they appeared most frequently
in PYyTHON/HYPOTHESIS tests. For instance, in the NumPy library,
developers implemented helper functions such as arrayAllClose
to compare two array-like objects for structural and element-wise
equality within a given relative or absolute tolerance [PH44]. These
auxiliary functions were often reused throughout the testing code.
We hypothesise that some of these functions are necessary due to
the lack of static types in Python.

Depending on the framework, assertions were implemented with
an explicit assertion [J]J50], as a boolean expression to be returned
from the test [RQ26][JJ17], or as an assertion error thrown if a
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condition was not met [JJ20]. Some tests even used a combination
of these, making it more difficult to comprehend the test logic [RQ6].

4 THREATS TO VALIDITY

Because we are using qualitative research methods, our own ex-
perience with PBT had likely made its way into the interpretation
of the dataset. To reduce the likelihood of a misinterpretation that
would pose a threat to the validity of our results, we cross-checked
every feature label between at least two researchers, and discussed
any discrepancies until we reached agreement.

Additionally, due to our test selection strategy, our dataset is
largely biased towards tests from popular open-source repositories.
While the data aligns with our approach to identify the widest possi-
ble variety of PBT practices, we cannot generalise any distributions
of these practices to a wider selection of tests. Future work could
select a subset of the features we examined, and replicate the study
with stratified or random sampling to provide such information.

5 RELATED WORK

Unlike this work, which studies patterns across multiple environ-
ments, most existing studies focus on PBT within a single one.
Etna [15] is the exception, providing an evaluation platform for
PBT approaches in both Coq and Haskell. Most other existing stud-
ies focus on Python’s HYPOTHESIS:

Tyche [9] is used to study how developers interact with the frame-
work when offered visual feedback on their tests’ effectiveness;

Corgozinho et al. [5] identifies the most commonly implemented
properties and the features used to construct them;

Ravi and Coblenz [14] conducted a larger-scale empirical analysis
which refines this property taxonomy and concludes that prop-
erties related to exception-raising, inclusion, and type checking
are most effective at detecting bugs; and

Wauters and De Roove [16] analyse the challenges that develop-
ers face when using PBT for machine learning projects.

Finally, Goldstein et al’s [8] interviews with OCaml developers
reveal common challenges in writing property-based tests and
show that developers prefer using PBT in “high-leverage” situations
where it offers clear benefits over conventional unit testing.

6 CONCLUSION & FUTURE WORK

We found that PBT is used to test a large variety of systems, from
standalone functions to entire components, and verifies three types
of properties: adherence to a contract, equivalence with an oracle,
and expected error behaviour. Developers combine customised
generators with post-hoc alterations to control the property domain
of their tests, and they write non-trivial logic to verify the properties,
often with multiple assertions along various execution paths. Our
preliminary results lead to these follow-up research questions:

e How do language features influence PBT framework design
and the comprehension of property-based tests?

e What are the benefits and limitations of having a test do-
main that is different from the property domain?

e How does post-hoc alteration affect the effectiveness of a
property-based test?
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https://github.com/EngineHub/WorldEdit/blob/7392d9ccd14562f0976d749f53615af2fe79b27f/worldedit-core/src/test/java/com/sk89q/worldedit/util/SideEffectSetTest.java#L47-L55
https://github.com/aeron-io/simple-binary-encoding/blob/beea0b2cd0ce83e3a24262ba8f37f9d945be5c72/sbe-tool/src/propertyTest/java/uk/co/real_logic/sbe/properties/JsonPropertyTest.java#L34-L52
https://github.com/indexmap-rs/indexmap/blob/1818d4140d86aeef18c515f1b060a3fa68da2708/tests/quick.rs#L216-L235

Property-Based Testing Across Four Environments in Open-Source Repositories

e Which PBT design choices lead to a more “ergonomic” way
of writing property-based tests?

We believe that by investigating these questions, we can improve
the effectiveness and usability of PBT across all environments.
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