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ABSTRACT
Static type systems are a well-established tool for preventing basic

software errors, with more advanced ones providing strong guaran-

tees of program correctness. Additionally, type systems encourage

a “types first, implementation later” developer workflow known as

“type-driven development” (TyDD). However, current widespread

TyDD practices are based on simple type systems with limited ex-

pressivity, and the advanced tools being developed by researchers

are not making it into mainstream programming languages. To

determine how current practitioners experience the use of type-driven
development and what inhibits its adoption by a wider range of de-
velopers, we conducted a survey with 130 participants from various

backgrounds, asking them to describe their experience with current

TyDD tools. According to them, TyDD can guide, communicate, and
verify program implementation, but is currently limited by usability

issues and missing features. Based on these results, we recommend

that advanced TyDD tools be made available to a wider range of

developers by investigating and addressing these limitations, with

a focus on increasing expressivity while preserving usability.

1 INTRODUCTION
Static type systems are one of the most commonly used tools for

formally verifying software. Unlike other established verification

methods such as software testing [2] or code review [4], static type

systems can be used to completely prevent certain classes of errors

at compile-time. As Dijkstra put it, “program testing can be a very

effective way to show the presence of bugs, but it is hopelessly inad-

equate for showing their absence” [13, p. 864]. Static type systems,

on the other hand, are a method for “proving the absence of certain

program behaviours by classifying phrases according to the kinds

of values they compute” [41, p. 1]. For example, they can enforce

simple constraints such as “retrieving the element at the ith index
can only be performed on a list”.

The picture of type systems as purely a tool for error preven-

tion is, however, incomplete. An important object of study within

programming language research is how types influence program-

writing, via an approach often referred to as “type-driven devel-

opment” (TyDD). In his textbook on TyDD, Brady describes this

approach as involving “[writing] types first and [using] those types

to guide the definition of functions” [6, p. 5]. For example, he de-

fines a type-driven approach to reasoning about message-passing

concurrent programs as “writing an explicit type describing the

pattern of communication, and verifying that processes follow that

pattern by type checking” [7, p. 2/22]. Brady claims that the name

“type-driven development” suggests an analogy to test-driven devel-

opment [44]: in both cases, you “first establish a program’s purpose

and whether it satisfies some basic requirements” [6, p. 3] and only

then implement it.

We can already see basic forms of type-driven development in

current mainstream programming languages. For example, writing

an interface in Java is essentially first expressing some desired

behaviour using types and only then implementing it. Over the

past decades, programming language researchers have designed

and investigated many advanced type systems, including

• ownership types, used in Rust [27], which enforce safe mem-

ory usage in concurrent settings and in the absence of

garbage collection;

• dependent types, used in theorem provers such as Agda [39],

Rocq [50], or Lean [12], which can enforce constraints such

as “retrieving the element at the ith index can only be per-

formed on a list with more than i elements”, but are also
used to formalise and prove mathematical theorems; and

• effect systems, which can be used to describe program side

effects and check for their occurrence at compile-time [38].

These advanced type systems come with powerful derived tools

which facilitate type-driven development such as typed holes (see

Section 2.2) or type-based library search such as Hoogle [37]. Un-

fortunately, these tools currently live in relatively niche languages,

often as prototypes or proofs-of-concept, and are not available in

widespread programming language ecosystems
1
.

Anecdotally, software engineers who are used to working with

static types systems often speak of “missing them” when using a

programming language without one. Similarly, they prefer using

languages with static types when working on large-scale, collabora-

tive projects which prioritise reliability. Even Python and JavaScript,

both popular programming languages designed to be dynamic and

flexible, have statically-typed versions in the form of mypy and

TypeScript respectively. Though these static checks can be circum-

vented, and the code can be executed regardless of whether the

type checking succeeds, it is considered bad practice to do so when

working on industry-standard software.

So what exactly is it that practitioners “miss” when they do

not have static types available? And why have we not seen too

many advanced type systems make their way into mainstream

programming language processes? We imagine that type-driven

development could become an even more valuable tool for software

engineering, if we can pinpoint the current developer experience

1
Under an “ecosystem” we understand all tools and libraries that facilitate program-

writing and software development in a programming language.
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and improve it with the best practices from the software engineering

community. To that end, this work aims to achieve two goals via

three research questions:

Goal 1: Understand how current practitioners experience

the use of type-driven development.

RQ1.1: What does the practising community understand under the
term “type-driven development”? Though we have defini-

tions of TyDD from Brady [6, 7], we wish to see how the

approach is perceived in practice.

RQ1.2: Which perceived benefits do practitioners gain from using
type-driven development? This research question aims to

uncover the aspects of TyDD that are actually perceived as

valuable by current practitioners — and perhaps show why

making advanced TyDD tools available to a wider range of

developers is a worthwhile pursuit.

Goal 2: Identify what inhibits the adoption of advanced

type-driven development by a wider range of developers.

RQ2: Which improvements would practitioners like to see in existing
tools facilitating type-driven development? Understanding
what practitioners currently struggle with when applying

TyDD might give us some indicators as to why its more

advanced tools have not been adopted into mainstream

developer processes.

Based on an online survey with 130 practitioners, we conclude

that type-driven development is considered to be an approach to

program-writing which helps guide, verify, and communicate the
implementation. Practitioners feel that it supports their mental

model of the problem and implementation, gives them confidence

in their solutions, and makes the overall development process more

enjoyable. Based on the improvements our participants wished to

see, we identified three inhibitors to the widespread use of current

advanced TyDD tools: (1) they do not sufficiently shield users from

their underlying complexities, (2) the quality of their ecosystems is

inadequate, and (3) they miss library and tool support for building

applications which can interact with the real world. As a result, we

suggest a usability-oriented research agenda for gradually increas-

ing type expressivity within mainstream programming languages.

2 TYPE-DRIVEN DEVELOPMENT
Consider the following pseudocode, which defines a recursive im-

plementation for getting an element at a certain position in a list:

1 fun get(index , list) {
2 if (list.isEmpty () || index < 0) return null
3 if (index == 0) return list.first()
4 return get(index - 1, list.subList (1))
5 }
6

7 print(get(['a', 'b', 'c'], 2))

If we were to actually run this code, we would get a runtime

error: “cannot call isEmpty() on the number list (line 2)”. The
interpreter has detected an error: we are calling the function with

our arguments in the wrong order. We can now apply the simple

fix and move on. Unfortunately, there is nothing stopping us from

repeating this error somewhere else and no guarantee that we will

be able to detect it before it causes trouble.
With the help of a static type system, we can prevent this class

of errors altogether. With the function signature type-annotated,

our adjusted code snippet would throw the following error during

compilation, i.e., before even running the code:

1 fun get <A>(index: Int , list: List <A>): A? {..}
2

3 print(get(['a', 'b', 'c'], 2))

type mismatch for argument index (line 3):
expected: Int
actual: List<Char>

We are now communicating two crucial things to the caller of

our get function: (1) that we expect an integer and a list of elements

from them in that order, and (2) that they should expect to receive

a value of the same type as the elements in the list or null.
The following two subsections describe how we can go further

with type-driven development by encoding more expressive prop-

erties in the type signatures and interacting with the compiler in

order to find an implementation.

2.1 Encoding Properties in Types
With a dependently-typed system, we can encode evenmore complex

functional properties into the program’s type signatures. In the

following snippet, we “index” the types of the arguments with the

natural number n — the types now depend on it:

• Int[0,n] means that we expect an integer between 0 (in-
clusive) and n (exclusive), and

• List<A>[n] means that we expect a list of length n, con-
taining elements of type A.

Because n is defined as a natural number instead of an integer, we

know that it will always be a valid upper bound and list size.

1 fun get <n: Nat , A: Type >(
2 index: Int[0,n],
3 list: List <A>[n]
4 ): A {
5 if (index == 0) return list.first()
6 return get(index - 1, list.subList (1))
7 }
8

9 print(get(4, ['a', 'b', 'c']))

cannot resolve constraints on n (line 9):
in expression 4: n > 4
in expression [‘a’, ‘b’, ‘c’]: n = 3

The type checker will now throw a compile-time error if the

provided index is out of bounds. Additionally, neither condition

which would have caused the function to return null will ever occur:

index < 0 is eliminated by the lower bound on the type, and

list.isEmpty() would be true if n = 0, but that would mean

that index must be between 0 (inclusive) and 0 (exclusive)

— which is impossible.
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At this point, it is probably good to reflect on why this matters —
arewe not essentially just moving the same checks from the runtime

to the compile-time? Well, firstly, encountering a runtime error

in our untyped example is the best-case scenario: in some cases,

the program would not error and simply behave in an undefined

way, resulting in a bogus computation. Secondly, such a check can

easily be lost in huge codebases, especially with many developers

collaborating on it. A static encoding of the data’s validity into the

structure holding it, however, enforces validation at the entry point

and makes it persistent in the rest of the program [26].

Unfortunately, it is not always a completely straightforward task

to convince the type checker that you are, indeed, honouring all the

contracts defined in the type signatures. In our get function exam-

ple, the type checker would expect a formal proof of the array index

bounds at every call site. Providing these proofs either requires

a careful setup of the types to make the information about index

bounds flow to the right place, or else requires manual intervention

by the programmer to provide the proof terms explicitly. Either

way, the hassle of having to encode these proofs and maintain them

in evolving code often outweighs the desire for formal correctness

in day to day software engineering.

An example of an attempt to reduce this effort are liquid types [52],
which limit constraint expressivity so that the resulting problems

can be automatically proven by an SMT
2
solver [11].

2.2 Interactive Programming with Types
An additional benefit of static type systems is their power to provide

immediate feedback to the developer. Typed holes are a signature
TyDD tool, allowing developers to put a “hole” in their code as a

placeholder for some expression and to find a suitable implementa-

tion for it by interacting with the compiler. For example, we could

begin with the following partial definition of a function that applies

a transformation to each element in a list:

1 fun map <n: Nat , A: Type , B: Type >(
2 f: A -> B,
3 list: List <A>[n]
4 ): List <B>[n] {
5 if (list.isEmpty ()) return [___]1
6 return [___]2
7 }

The development environment would then display the following:

Goal 1: List<B>[0]
Goal 2: List<B>[n]

In the case of the first goal, the tooling can simply fill in the

hole automatically — there is only one way to construct a list of

length 0. To find an implementation for the second goal, we could

ask the tooling to suggest a way to construct the desired value. In

the case of most functional programming languages, the tooling

would probably refine that hole into two new holes, expecting a

value prepended to a new list
3
:

2
“Satisfiability modulo theories (SMT)” are used to determine the satisfiability of

mathematical formulas.

3
Lists in functional programming languages are defined recursively: they are either

an empty list or an element prepended to a list. To construct a list with two elements

(‘A’ and ‘B’), we would write ‘A’ :: (‘B’ :: []), i.e., element A prepended to a

list where element B is prepended to the empty list.

5 fun map <n: Nat , A: Type , B: Type >(
6 f: A -> B,
7 list: List <A>[n]
8 ): List <B>[n] {
9 if (list.isEmpty ()) return []
10 return [___]1 :: [___]2
11 }

Goal 1: B
Goal 2: List<B>[n - 1]

Upon examining the first of these new holes, the tooling would

present us with the following overview of the context:

Context:
f : A -> B
List.first : List<A>[s > 0] -> A
Goal: B

Since our goal is to build a value of type B, we probably want

to apply function f to some value of type A. To preserve the order

of the original list, this should be the first element of the input list.

According to our context, retrieving the first element of the list

requires the length of the list to be larger than 0 — which we know

is true! We can now successfully apply the functions to obtain a

value of type B. Following the same technique for the second hole,

we end up with the following recursive definition for the function:

1 fun map <n: Nat , A: Type , B: Type >(
2 f: A -> B,
3 list: List <A>[n]
4 ): List <B>[n] {
5 if (list.isEmpty ()) return []
6 return f(list.first ())
7 :: map(f, list.subList (1))
8 }

In a real-world scenario, the context of a hole would show the

components that are currently available in the scope. This means

that without any additional filtering or sorting (provided by, e.g.,

the editor), the developer might have to search through a long list

for what they need. Additionally, the List.first function might

not be displayed unless it was explicitly imported into the scope,

making it the developer’s responsibility to know of the existence

of such a function or to find one suitable for their needs.

3 STUDY SETUP
To answer our research questions, we conducted an online sur-

vey among current practitioners of type-driven development. In

order to not influence the participants’ answers with our precon-

ceived ideas, most questions in the survey were open-ended and, as

such, required qualitative research techniques to be analysed. This

worked well with our goal to “find the most [...] possible values of a

characteristic in the population” rather than to “identify the distri-

bution of characteristic values” [33, p. 1]. This section details how

we applied these qualitative techniques. The survey and responses

are available in our data repository under an MIT license [24]. This

study was conducted with the approval of the Human Research

Ethics Committee at the Delft University of Technology.

https://www.tudelft.nl/en/about-tu-delft/strategy/integrity-policy/human-research-ethics
https://www.tudelft.nl/en/about-tu-delft/strategy/integrity-policy/human-research-ethics
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3.1 Survey
All data was collected through an online anonymous survey, dis-
tributed over the following channels, targetting mainly participants

from communities that actively use advanced TyDD tools:

• the official Zulip chats of Agda, Rocq, and Lean
4
,

• the official Zulip chat of the EuroProofNet
5
,

• the official Discourse forums of Rocq and Haskell
6
, and

• posts on social media by the authors.

The survey was available for a period of one month and could be

filled in at each participant’s own pace. Participation was voluntary,

and respondents were free to skip any questions. The full survey is

available in our replication package [24].

Demographics. We asked participants to fill in which role they

identify with most as well as to select languages they have used

for type-driven development. In order to include as many current

users of TyDD tools as possible, we provided a wide range of roles

to select from, including mathematicians using them to formalise

their work and formal methods engineers using them to specify

and verify software systems:

⃝ mathematician
⃝ mathematics student
⃝ formal methods engineer
⃝ software engineer

⃝ computer science researcher
⃝ computer science student
⃝ hobbyist
⃝ other

We offered a choice of languages with advanced or interesting

type systems, and additional free-text fields for others they wished

to mention. For each of their selected languages, we asked partici-

pants to indicate how they would rate their proficiency with it on

a scale of 0 (Complete Beginner) to 10 (Expert) and to select the

contexts they have used it in:

□ At my job in industry
□ For research
□ For teaching

□ During a course / workshop /
summer school

□ For hobby projects

Questions. Themain body of the surveywasmade up of open-ended

questions about type-driven development. This paper presents re-

sults based on the questions that asked participants to:

(1) define what “type-driven development” means to them,

(2) list up to three benefits they think TyDD provides, and

(3) list up to five things they would like to see improved in

existing TyDD tools.

In our cross-sectional study on the learning obstacles of an in-

teractive theorem prover [25], we found that using short, free-text

fields offers enough structure to receive the desired granularity of

responses but does not restrict the participants to a set of precon-

ceived ones. A similar approach has been taken by Robillard and

DeLine in their field study of API learning obstacles [42]. From now

on, we write “benefit / improvement entry” when referring to re-

sponses to one of the three or five individual fields of the respective

question.

4agda.zulipchat.com rocq-prover.zulipchat.com leanprover.zulipchat.com
5epn.zulipchat.com europroofnet.github.io
6discourse.rocq-prover.org discourse.haskell.org

3.2 Pilot Study
To verify our survey design, we conducted a pilot study with five

participants who had at least some experience with type-driven

development. They were given access to an online preview of the

survey, and asked to fill in the answers as they saw fit. Based on

their responses and the feedback they provided in a subsequent

conversation, we concluded that the general, open-ended structure

of the survey was suitable, and only changed a few details about

the wording of the questions.

Since the survey did not significantly change after the pilot, we

included the initial participants’ responses in our results.

3.3 Analysis
In order to analyse the free-text data, we applied a series of qualita-

tive research techniques to each set of responses. Initially, the first

author engaged in descriptive coding [36, pp. 55–69] of the sub-

missions in order to “closely [inspect], deeply [make] sense of, and

[infer] meaning from [the] data” [22, p. 226]. She assigned a single

label (i.e. “code”) to each benefit and improvement entry, since they

each represented exactly one idea or concept. For example, both

of the following benefit entries received the label confidence in
solutions:

• “If it types, it works” [P163]

• “Peace of mind, about everything being correct or obviously

wrong.” [P218]

The TyDD definitions, on the other hand, often expressed multiple

ideas and concepts, and thus usually received multiple labels. To

illustrate, the following TyDD definition received four labels:

“Using the type system of a language to

constrain the possible implementations of a specification
1
.

I closely associate type-driven development with

the practice of writing a type signature
2
and

an implementation with some holes
3
, then

recursively refining those holes
4
.” [P52]

1minimising solution space
2types first
3interactive development
4interaction with compiler

This resulted in one codebook per question. After the first iteration

of coding, we looked at each set of responses per code separately,

and recoded them as necessary.

Since the dataset was not overwhelmingly large, we did not have

to introduce the complexity of multiple coders, thus achieving con-

sistency without having to reach inter-rater agreement. We did,

however, apply Hoda’s technique for single analysts [22, p. 260]:

we had regular meetings during which the codes were reviewed by

the other researchers on the team and adjusted as necessary. We

acknowledge the creative subjectivity of our codebooks (available

in the data repository [24]) and declare our constructivist epistemo-

logical stance. To provide context for this stance, we specify that

our team consisted of three researchers specialising in (1) depen-

dent type systems, (2) software evolution and testing, and (3) the

usability of advanced type systems.

Once we were satisfied with the codes, we created sticky notes

for each one accompanied by short explanations, and sat together to

https://agda.zulipchat.com/
https://rocq-prover.zulipchat.com/
https://leanprover.zulipchat.com/
https://epn.zulipchat.com/
https://europroofnet.github.io/
https://discourse.rocq-prover.org/
https://discourse.haskell.org/
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role count

software engineer 54

computer science researcher 32

mathematician 14

computer science student 13

formal methods engineer 8

hobbyist 4

mathematician working as a software engineer 2

mathematics student 2

formal methods researcher 1

Table 1: Division of participants over role they identify with

diagram with them [8, pp. 218–221]. The resulting diagrams helped

us understand the relationships between the ideas and concepts

in the participants’ responses and form the basis for our results in

Section 4. Finally, we wrote memos — notes of “ideas about codes

and their relationships as they strike the analyst” [20] — during

our meetings and coding iterations and used them to discuss the

significance of these results in Section 5.

4 RESULTS
The survey received a total of 281 responses [P0-280]. Unfortunately,

127 of these were completely blank, 24 contained only demographic

information about the participants, and another 20 contained only

the participant’s definition for type-driven development. We de-

cided to only include responses containing more than just demo-

graphics, resulting in a total of 130 processed responses. The data is

available in our public data repository [24] under an MIT License.

The demographics of the processed participants are summarised

in Tables 1 and 2. Almost 78% of our respondents associate with com-

puter science, mostly as software engineers, but also as researchers

or students in the field. The most commonly-used language was

Haskell [32], a pure functional programming language, with 83%

of participants claiming at least some experience with using it for

type-driven development. The other two most popular languages

were Agda [39], a dependently-typed language claimed to be used

mostly for research and hobby projects, and Rust [28], a language

with ownership types which has recently been rising in popularity.

4.1 Defining “Type-Driven Development”
Though we have a definition of “type-driven development” from

Brady [6, 7], we wanted to see how the practising community

understands the term. Based on the participants’ responses, we

were able to create the following definition:

“Type-driven development is an approach to programming

in which the developer defines a program’s types and type
signatures first in order to

(1) design and (2) communicate the solution,
(3) guide and (4) verify the implementation, and

(5) receive support from related tools.”

(1) Designing Solutions. The process begins with the developer

“specifying expressive types” [P144] for the program they wish to

write in order to “express the intent of the code before writing

it” [P81]. This allows them to “focus clearly on the ‘what’ before

[they] dive into the ‘how’” [P72], essentially “modelling [the] do-

main” [P44] and “encoding business logic into types and transfor-

mations between them” [P57].

(2) Communicating Solutions. Type signatures “describe function
inputs / outputs” [P65] and “specify the logic and contracts of

your program” [P79]. They are used for “understanding library

APIs as much [...] as the actual documentation” [P45], allowing

developers to “think about how the different parts of the algorithm

will come together later, without having to care about the actual

implementation” [P63].

(3) Guiding Implementation. Once the types are defined, the pro-
grams “almost write themselves” [P15], directing your implementa-

tion and “reminding you to deal with all possibilities” [P15]. Type an-

notations “cut down the space of possible [implementations]” [P6]

for a program to the point where it “can almost be derived from the

signature” [P4]. Often, the “structure of the problem drives (even
determines) the structure of the solution” [P18].

(4) Verifying Implementation. Checking implementations against

their type signatures at compile-time makes “some erroneous states

unrepresentable, and some classes of bugs impossible towrite” [P40].

Developers “let the compiler catch [their] mistakes before [they]

make them” [P115] making their programs “correct by construc-

tion” [P129]. By having the type checker “enforce critical invari-

ants” [P47] before running the program, “[successful] compiling

means that it is very likely correct” [P7].

(5) Tool Support. Many participants viewed the associated tooling

and compiler support as an important part of the TyDD approach.

They describe the “incremental” [P18] implementation process as

“an active conversation between [them] and the compiler” [P35],

where “the compiler will complain when [they] mess something

up” [P45].

A core concept is using “holes” in programs (see Section 2.2),

which can be filled “from top down with the correct implemen-

tations” [P76]. Tooling support for these usually includes context

presentation (which type the hole expects and which variables are

available), hole refinement (how the hole could potentially be split

up into smaller holes), and even “deriving a correct implementation

[for the hole] from types automatically” [P41].

4.2 Benefits
We received a total of 297 benefit entries from 108 unique partic-

ipants, indicating what the benefits of TyDD are as perceived by
the participants. Many of these point to and even overlap with the

definitions of type-driven development from Section 4.1. According

to the responses, type-driven development “gives structure in [the]

development process” [P77] and even “provides a nice framework

for [it]” [P37]. We identified ten main benefits that practitioners

perceive to be gaining from TyDD:

(1) “Deeper understanding of the problem domain” [P44]. Because
developers use complex types to “[express] exactly what [they]

mean” [P12], they need to “focus on the conceptual understanding
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used for proficiency

programming language count industry research teaching learning hobby average most common

Haskell 106 42 43 22 24 73 6.5 8

Agda 64 6 36 13 21 33 5.4 3

Rust 58 20 18 3 4 43 5.8 7

Lean 49 6 26 14 11 29 5.2 2

Idris 34 3 11 1 4 26 4.3 2

TypeScript 32 24 6 2 3 9 6.7 9

OCaml 29 6 12 5 9 18 5.0 5

Scala 22 11 5 2 4 11 5.4 5

other statically-typed language 18 11 4 2 4 10 6.2 7

Dafny 8 1 3 1 1 6 4.1 5

a language with refinement types 8 0 6 0 1 4 6.0 7

Swift 7 2 1 2 0 4 5.4 2

other dependently-typed language 6 1 6 1 1 3 8.3 10

other language 6 4 3 2 2 3 7.7 10

Hazel 2 1 0 0 1 0 2.5 2

Table 2: Overview of participants’ programming language experience

first” [P4]. This makes types “a good intermediate step between

specification and operational code” [P10].

(2) More “thoughtful design” [P50]. TyDD “forces a problem to

be more thought out before any implementation begins and may

sometimes reveal flaws in potential structures” [P56]. It “nudges

you to think and consider all your options” [P1].

(3) Easier mental models composed of interfaces. Because type

signatures give you a clear interface for each component, TyDD

“helps ‘design at the level of interfaces’, which leads to cleaner

code” [P32]. It is “a mental tool to abstract away complex logic

when reading / reviewing others’ code” [P39], allowing you to

“hold more of the program in your head when you consider just the

signatures.” [P211]. Additionally, it gives you the “ability to use a

function or interface before its implementation is defined (e.g., in

tests)” [P2].

(4) “Better collaboration through contracts and [APIs]” [P36]. Ad-
ditionally, TyDD “[enables] collaboration based solely on inter-

faces” [P14], since “types can be easier discussed than code” [P176].

They “[expose a] ‘hardened’ API which is difficult for a misguided

user to use incorrectly” [P33], meaning that library designers can

trust the compiler to limit how their components can be used. It

also enforces a certain “honesty about promises” [P28], telling users

exactly which guarantees they can expect from a component.

(5) Maintainability of the resulting programs. TyDD facilitates

“lower long-term maintainability costs” [P162]. Though we did

not receive much context for these responses, we interpret them

as relating to type-annotations as comprehension aids, which stay

consistent and up-to-date in the face of software evolution thanks

to being statically checked.

(6) Clearer path towards an implementation. “Since code is con-
strained by the types, there [are] usually only [a] few reasonable

ways to write it” [P106]. Not only does this help with “[reminding

developers] of corner cases that [they] might otherwise miss” [P15],

it also offers possibilities to “automatically synthesise / generate

the implementation” [P52].

(7) “Top-down development” [P58] via interactive development. Hole-
driven, interactive development allows developers to “see the type

of the goal and all variables in context” [P0], thus “easing the re-

quirements on [their] short term memory” [P12]. Holes can also

be broken up into multiple sub-goals, “each of which is easier to

conceptualize and focus on” [P52].

(8) Higher confidence in the correctness of one’s solution. As its
main selling point, TyDD offers guarantees about the absence of

certain bugs in the resulting programs. This allows developers to

“[enforce] invariants that otherwise would only exist on paper” [P4],

“feel confident that [their] systems work as [they] intended” [P72],

and have “peace of mind about everything being correct or obvi-

ously wrong” [P218]. They can rely on the type checker to “inform

[them] when [they] make mistakes” [P5] and to check that they

are “not being stupid” [P12].

(9) “Way less scary” refactoring [P5]. Since types “allow one to

make assumptions about [the program’s] validity”, they allow for

confident optimisation [P112] and other refactoring. Type checkers

catch “almost all forgot-that-spot mistakes when refactoring” [P69]

and sometimes even allow developers to “turn most of [their] brain

off without having fear of breaking something important” [P236].

(10) Pleasure when programming. Last, but definitely not least,

participants find it “fun” to use TyDD — twelve entries listed this

as a benefit. Participants mention that “it is relaxing when the later

parts of coding require less focus” [P15], that they can “quickly

[get] new success moments” [P266], and that it “makes [them] feel

smarter” [P106].
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4.3 Improvements
We received a total of 217 improvement entries from 72 different

participants. Two of these entries were not included in our anal-

ysis: one was an incomplete sentence whose meaning we could

not gauge, the other an opinion that we should no longer teach

programming languages without type systems. We were able to

identify four general areas of improvement for tools that facilitate

type-driven development:

(1) shielding the users from the underlying complexities,

(2) improving a wide range of ecosystem features,

(3) integrating TyDD tools into the real world, and

(4) adding more features to existing tools.

(1) Shielding Users from Complexities. According to the responses,
working in languages with strong type systems can be “compli-

cated” [P50]. The main difficulties lie in the fact that

• “the learning curve is... very curvy” [P30],

• “debugging is cumbersome [since] sometimes code simply

does not run because of some errors that a weakly-typed

language might have ignored” [P50],

• “the stronger the type system, the more difficult it is to

make the type checker understand what you mean” [P2],

and

• full program requirements are not known from the start of

a project and therefore type signatures will change a lot —

this creates overhead when refactoring [P5].

Many participants mentioned wanting improvements to a strong

type system’s rigidity and “more flexibility when things are not

quite right” [P69]. Current advanced type checkers tend to refuse

to compile in order to stay 100% safe, which can cause frustrat-

ing errors. Participants would also like to see “more automation

for dealing with ‘human trivial’ tasks” [P8], such as boilerplate

code [P21] or “‘trivial’ [type] conversions like equalities on natural

numbers” [P29]. Other improvements would include a “hammer”

tactic [P7], whichwould try to brute force proofs, as well as “smarter

termination checkers” [P22], which can better determine whether

more complex recursion patterns are terminating.

(2) Improving the Ecosystems. By far the most mentioned desired

improvements were to ecosystems of existing TyDD languages.

These ranged from error reporting to integrated development en-

vironment (IDE) support, and also included documentation and

community building. The desired improvements frequently high-

lighted features that are already integral components of mainstream

programming language ecosystems.

Currently, “there are too few tools facilitating type-driven de-

velopment, unlike the repertoire that object-oriented programmers

enjoy” [P32]. Improvements mentioned by participants can be di-

vided into five categories:

Documentation: Participants would like documentation for TyDD

tools to be richer, more searchable, and better integrated with
types. Currently, “documentation can be subpar” and it is some-

times “very hard to see whether a library definition could be

used for [a developer’s] purpose simply because its type is so

generic that it is impossible to figure out at a glance whether

the type can be instantiated to something [they are] interested

in” [P5]. Having “illustrative, actionable docs with lots of mean-

ingful, concrete examples” [P80] and “more easy to access edu-

cational resources” [P56] would help mitigate these issues.

Additionally, even if documentation does exist for a certain

tool, it can be hard to find the answers and features the de-

veloper needs. For example, in Lean, programmers have “no

effective way to discover what tactics are available” [P45] and

Agda is missing a tool which lets programmers “search for func-

tions based on their types” [P1]. In addition to wanting these

general improvements to a language ecosystem, participants

were asking for “better navigability / surveyability of library

APIs during program development” [P18].

Finally, participants suggest that there could be “better in-

tegration of rich types and documentation” [P24]. With the

proper IDE features, complex types could provide information

to the programmer at relevant moments (e.g., inferred types).

Conversely, “attaching information to types (notations, names-

paces) and having IDEs / tools take advantage of that more

comprehensively” could improve features such as suggestions

and autocompletion [P21].

Error Reporting: In many programming languages with advanced

type systems, “error message are usually very bad” [P17]. They

“require knowledge of the tooling implementation” [P1], “expose

internal concepts that are not very beginner-friendly” [P40],

and do not easily “differentiate between actual logic errors and

equivalents to ‘missing semicolon’ problems” [P15]. Specific

changes participants would like to see are “more tools that

suggest automated fixes” [P40] and the possibility to trace (er-

roneous) type-level computations [P67].

Visualisation: To help comprehend program and codebase struc-

ture, participants mentioned several types of visualisations they

would like to have. Examples include “something like UML

diagrams for type-driven development” [P32], “automated con-

trol graph construction / presentation” [P62], and “tools (even

widgets) which enable exploring math ideas” [P13].

IDE Support: A significant portion of the entries pointed to editor

support and how IDEs should present context, refactor code,

generate code, and generalise these features by using Language

Server Protocol
7
(LSP). Additionally, participants would like

to see “wider editor support for interactive modes” [P16] and

“better IDE support for large-scale proof engineering (e.g., be-

ing able to navigate theorem dependencies [and] displaying

complex proofs in concise form)” [P219].

Typed holes are commonly used to present context to the pro-

grammer by displaying all available variables and definitions, as

well as their type signatures. However, not all information being

displayed is always relevant [P52], and “type checkers often

have to introduce their own variables, but fail to explain why or

where they were introduced” [P1]. Additionally, programmers

“have to [successfully type check the partial program] to get

[holes] to show something useful” [P176] — it would be nicer if

context was available even before that.

Refactoring tools were also mentioned as lacking in the re-

sponses, with code extraction and signature adjusting as the

two main examples. For example, participants would like “a

7
A protocol for communication between language servers and IDEs [35].
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good lemma extraction mechanism which allows [them] to cre-

ate a new lemma from a proof state” [P63] as well as one “to add

a new argument to a lemma so that all call sites are adjusted

automatically” [P63].

Though code generation was listed as a benefit of TyDD,

there were still improvements mentioned for this functionality:

auto-complete should be smarter [P4], filter out suggestions

that are nonsense [P162], and have better variable naming and

formatting [P266]. Participants saw “a lot of potential in pro-

gram synthesis and LLMs to help generate implementations, or

present multiple possible implementations to the user” [P52].

Importantly, participants also felt strongly about the use of

LSP to support many of these features. A participant wrote that

“language servers should be seen as essential for the success of

a [programming language] targeting the industry nowadays”

and that “they should be part of the ‘official package’ ” [P39].

Language maintainers should “focus on LSP functionality first,

so that [developers] can use it in [their] editor of choice” [P63].

It would be beneficial to have generic LSP support for facilitat-

ing type-based interactions, such that not every LSP client for

languages with such features has to “reinvent the wheel.” [P6]

Community: Finally, participants would like to see TyDD language

communities “regroup and build communities outside of acade-

mia by providing accessible pathway to newcomers with pre-

existing background in engineering” [P236]. This includes

• using naming conventions that are not at odds with OOP

conventions (e.g., typeclasses) [P25],
• maintaining tools over time, such that users can safely

incorporate them into their workflows [P17],

• making sure tools compose well with others [P17],

• providing “native data-structures (like arrays)” [P35] as

well as more proof libraries for verifying algorithms [P55],

• defining standardised project templates [P220], and

• having code formatters / linters available to keep code style

consistent automatically [P63] and to improve comprehen-

sion [P4].

Interestingly, Rust [28] and its ecosystem were often used as an

example of what all TyDD tools should follow.

(3) Integrating into the Real World. While using type-driven de-

velopment can have a variety of benefits for software engineers,

many TyDD tools are not ready to be used for writing real-world

software. Participants want a language in which they can prove

things but also one that is “suitable for production code” [P220].

Currently, there seem to be four main deficiencies:

Interacting with the Real-World: Our participants would like “the

ability to write programs that might be run in a business context

(as opposed to an academic context)” [P28]. Currently, this is dif-

ficult in most strongly-typed languages, since focus is more on

proving correctness of components rather than on frameworks

and libraries for communication with the outside world (e.g.,

user input or networks). Participants asked for “more examples

of use in practical software engineering” [P220] as well as “more

software development and less pure mathematics” [P73].

DevOps Tooling: Additionally, having “more DevOps-related tools

for actual deployment” [P73] is necessary to produce real-world

applications with TyDD tools. The most mentioned tools were

package managers, “like Rust with rustup and cargo” [P37].
“Every new cool language should copy the tooling provided by

Rust and Lean [and] have a GHCup or rustup” [P37].
Integration with Other Languages and Tools: Participants indicated

wanting to see “work on the interoperability with existing suc-

cessful tools” [P236]. They would like “easier interfacing with

other languages” [P4] as well as “widespread integration with

automation like SMT solvers” [P47]. Ideally, “some degree of

type-safety [would] extend across [the] whole stack” [P220].

This integration could also go the other way, where existing

tools can improve TyDD tools. An example would be “a better

AI companion that can be plugged deeper into the language,

allowing it to utilize the proof state better than currently” [P29].

Performance: Performance is an often-mentioned issue with cur-

rent strongly-typed languages — both at compile-time and at

run-time. With stronger type systems, a lot of computation

and checks are moved into the compilation step, meaning that

languages that use them “tend to compile a bit slower, which

worsens interactive development” [P5]. Run-time performance

also seems to be insufficient, with many tools using “too much

CPU [and] RAM” [P53]. Participants requested parallel compila-

tion [P9] as well as “control over run-time representation” [P22]

to help mitigate these issues.

(4) Adding More Features. There was a significant number of re-

sponses that requested either existing TyDD features to be brought

to other language ecosystems or new features to be added to exist-

ing TyDD languages.

Participants would like to see “more dependent types in practical,

industry languages” [P26] since it “would be nice if more languages

leverage invariant specification like that” [P48]. They would also

like “more hole orientation in all languages” [P48] and a “wider

adoption of case splitting
8
and inhabitation search

9
” [P24].

Examples of more powerful features to add to existing TyDD

ecosystems included “more interactive commands, e.g., for introduc-

ing a let-binding” [P0], “type-driven meta-programming” [P222],

and “support for reflection on embedded languages” [P35]. Mathe-

maticians asked for tools which “make translating math ideas to

formal proofs less painful” [P13], such as supporting “shape poly-

morphism” [P35] or being able to “work with the internal language

of various toposes” [P45].

5 DISCUSSION
With this work, we aimed to understand how current practition-
ers experience the use type-driven development. So, what does the
practising community understand under the term?

RQ1.1:What does the practising community understand

under the term “type-driven development”?

Based on the data, for current practitioners, type-driven devel-

opment encompasses the usage of types in order to

8
Case splitting is when the tooling can automatically split a hole into multiple new

holes based on some data structure. For example, splitting on a list would result in one

case for the empty list and one case for an element prepended to another list.

9
A compiler can perform an “inhabitation search” in order to attempt to generate a

potential implementation for a typed hole.

https://rustup.rs/
https://doc.rust-lang.org/stable/cargo/
https://www.haskell.org/ghcup/
https://rustup.rs/
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(1) comprehend the problem domain,

(2) model solutions to program requirements,

(3) guide developers to the implementation,

(4) communicate a program’s intent and behaviour,

(5) guarantee a program’s correctness, and

(6) enrich the context for developer tools.

These points correspond with Brady’s [6, p. 5] definition of TyDD as

being an approach where you “write types first and use those types

to guide the definition of functions”. He also writes that “you can

think of types as being a plan, with the type checker acting as your

guide, leading you to a working, robust program”. Our community-

based definition combines this with the concept of types as tools

for comprehension and provides an overview of concrete benefits

that practitioners perceive to be gaining when using TyDD.

RQ1.2: Which perceived benefits do practitioners gain

from using type-driven development?

Firstly, our participants seem to use TyDD because it helps them

with their mental models of the problem and their solution. The type

annotations provide a basis for communication and comprehension

and TyDD-derived tools such as context presentation or code gener-

ation allow them to hold only smaller parts of the program in their

mind. This is also likely what contributes to the perception that

type-annotated code is more maintainable. We can see a parallel

here with other software engineering tools and paradigms:

• domain-driven design [15] focuses on a deep understanding

and modelling of the business domain,

• model-driven development [21] allows developers to reason

at a higher level of abstraction, letting them think about

the domain rather than the implementation,

• test-driven development [44] encourages the developer to
define the desired behaviour first, and

• design by contract can “help express the purpose of a [func-

tion] without reference to its implementation” [34, p. 46].

Secondly, the static guarantees provided by TyDD give practi-

tioners a “peace of mind” and it seems that they feel more in control

of the whole process. TyDD facilitates safer collaboration via clear

contracts and encoded validation, and maintenance and refactoring

are perceived as more controllable and less likely to introduce bugs.

Lastly, type-driven development also seems to make program-

ming more enjoyable for these practitioners.

Since many of these benefits are more prominent in advanced

type systems, we wanted to understand what inhibits their adoption
by a wider range of developers. A logical place to start looking for an

answer are the existing languages and tools facilitating TyDD, and

determining how practitioners would like to see them improved.

RQ2:Which improvements would practitioners like to see

in existing tools facilitating type-driven development?

From the identified improvements, we hypothesise that three

form the main inhibitors to the adoption of advanced TyDD tools:

(1) the increasing effort required from developers to satisfy the

type checker when using advanced type systems to express

more complex constraints on their programs,

(2) the inadequate quality of current ecosystems for TyDD-

oriented languages, and

(3) the insufficiency of libraries, tools, and performance re-

quired for building software which can interact with the

real world.

We see a tension in the current TyDD tools between usefulness
and usability (i.e., ease of use), the perception of which form the

two key predictors of technology acceptance in the Technology

Acceptance Model [55]. Usefulness determines whether a tool is

valuable to its user, while usability refers to how easy it is for a user

to use a certain tool. Though these two terms may seem similar,

they are both important:

If a potentially useful feature requires such specialised knowl-

edge or breaks so often that it is basically unusable, it does
not actually provide any value to the user.

On the other hand, if an easily usable IDE feature is not applica-

ble in any useful context, it might as well not be available.

Type-driven development and the associated tools are currently

perceived as useful: they help developers think, and they can offer

some strong guarantees. In many cases, though, they are not usable
enough to be used by everyday developers. In Section 7 we discuss

gradual types — an existing technical solution for reducing the

rigidity associated with strict type systems. The work on gradual

types for advanced type systems usually addresses its usefulness by
demonstrating a proof of concept and making an argument as to

what value it could bring. In most cases, though, it forgets about the

usability aspect and does not integrate it into existing ecosystems

nor verify the design with a user study.

6 LIMITATIONS & THREATS TO VALIDITY
Limitations in Study Design. While the survey setup let participants

list benefits of and desired improvements to existing TyDD tools,

it did not let them communicate the significance nor severity of

their entries. Future studies could shed light on how impactful each

benefit is and how to prioritise the suggested improvements.

Researcher Bias. Due to our methodology, we have certainly applied

our own experience with type-driven development to the interpre-

tation of the dataset. We acknowledge the interpretive nature of

qualitative research and declare our constructivist epistemological

stance, utilising guidelines on conducting socio-technical qualita-

tive research to ensure the soundness of our work.

To reduce the likelihood of a misinterpretation that would pose a

threat to the validity of our results, we used labels and diagrams dur-

ing regular meetings [22, p. 260] to revisit each response multiple

times in different contexts and to help us identify and understand

the relationships between them. To ensure the credibility and rigour

of our study, we follow Hoda’s recommendations in Section 3 to

explain how the participants were recruited, show how the data

collection and analysis occurred, and share coding examples in

this work [22, p. 338–339]. Additionally, we provide our complete

dataset and codebook in a replication package [24]. Finally, as pre-

scribed by the Empirical Standards for Software Engineering Research,
we try to “present a clear chain of evidence from [participant] quo-

tations to proposed concepts” [1] in Section 4.
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External Validity. We have used convenience sampling to recruit

our participants. Considering the channels that we have used for re-

cruitment, our set of participants might be more positively inclined

towards TyDD. As a result, our observations might not generalise

to a wider population. Future work could replicate the study using

stratified or random sampling to further validate the findings.

7 RELATEDWORK
Research on how type systems are currently used and on their

usability is currently still somewhat limited. Most of the work

presented in the following section is from recent years, focusing

on the directions we should look towards rather than on potential

solutions to current problems.

Usage of Type Systems. Lubin and Chasins [30] utilised Grounded

Theory to examine how programmers write code when using a

statically-typed language. They conducted think-aloud program-

ming sessions and semi-structured interviews, and their focus was

on languages from the Haskell family. Like us, they found that

programmers used an iterative process to model their domain and

encode their solutions in type signatures, later using them to plan

and decompose their task as well as to get feedback from the com-

piler. They also identified an “exploratory” style of programming

when their participants were faced with a difficult or unknown

domain.

Shi et al. [47] conducted an observation study on Rocq (then

still named Coq) and Lean, which are both dependently-typed lan-

guages acting as interactive theorem provers. Their emphasis was

on proof-writing specifically, focusing on the more advanced pow-

ers of the type system. Despite that, their findings were very similar

to ours: participants interacted with the compiler and advanced by

incorporating its feedback, they consulted resources other than the

current proof, they considered design aspects beyond getting to a

correct proof, and they struggled with “minutiae” when trying to

convince the compiler that they are satisfying the constraints laid

down by the types.

Usability of Type Systems. The two most relevant works to this

paper are our cross-sectional study on the obstacles that new users

face when learning to use Agda [25], and Gamboa et al.’s [19]

study on the current barriers developers face in adopting and using

LiqidHaskell [52]. Though focusing only on one type system

each and emphasising entry barriers, the findings in these works

correlate with the ones presented in this paper. Both Agda and

LiqidHaskell users struggle with the underlying complexities

of the system, and are not sufficiently shielded from them by the

tooling. Inadequate ecosystems with difficult installation, unhelp-

ful error messages, lacking documentation, and insufficient IDE

support were a significant concern among both sets of participants.

Additionally, Crichton et al. [10] conducted a study on the mis-

conceptions that users have about the ownership types in Rust.

They found that their participants could, on a surface level, reason

about why a program is ill-typed, but did not possess a deeper

understanding of the resulting undefined behaviour. This seemed

to be a key barrier in learning to use ownership types, which in

turn prevented potential users from learning Rust — implying that

users should be better shielded from such underlying complexities

or have access to better tooling to ease working with them.

Finally, we would also like to mention the usability-oriented de-

sign for liquid types in Java byGamboa et al. [18], whichwas created

by conducting a developer survey where participants were asked

to evaluate alternative designs for the syntax. In their work, they

find that users must be able to build their program’s specification

incrementally, in a familiar, Java-like syntax, and that the design

should reduce any unnecessary overhead for the programmer.

Gradual Typing. Gradual type systems [48, 49] aim to reduce the

rigidity traditionally associated with static type systems by safely

integrating static and dynamic typing into a single language. In a

gradually-typed system, not all parts of the code have to immedi-

ately satisfy the type checker in order to be executed. This allows

developers to

(1) already run tests and experiment with the code before

putting in the effort of making it type-correct (though this

is mainly useful when not applying TyDD);

(2) gradually add static types onto existing untyped code; and

(3) safely call untyped code from statically-typed programs.

The gradual type system guarantees that if a runtime type error does

occur, it can be traced back to a specific location in the dynamically-

typed program [56]. Examples of implementations of gradual typing

for simple type systems include TypeScript [5], Hazel [40], and

Typed Racket [43].

Gradual types are also being explored for more advanced type

systems as a tool for providing a gradual path from simple to more

expressive types. For example, being able to experiment with code

in a dependently-typed language is even more important, since it

is cheaper to discover simple bugs via testing rather than trying

to prove correctness. Though there has been theoretical work on

gradual versions of dependent types [14, 31], ownership types [46],

security types [16], effect systems [3, 51], refinement types [29],

liquid types [53], and session types [23], these systems have not

yet been widely used in practice.

8 CONCLUSION & FUTUREWORK
Our first goal was to understand how current practitioners experience
the use type-driven development. In our survey, we see practitioners

defining it as an approach to program-writing in which they write

type signatures first in order to gain a variety of benefits throughout

their development process. Though the main selling point of having

a type system is its ability to prevent a certain class of errors, our

survey showed that current practitioners think TyDD can simplify

the design and implementation process, improve communication

and collaboration between developers, and create a more enjoyable

and confident developer experience.

Our second goal was to determine what inhibits its adoption by
a wider range of developers. It seems that though TyDD is viewed

as a very useful approach, its tools are currently not considered

usable enough. The more expressive a type system becomes, the

more demanding its type checker is with its expectations from

the developer. Additionally, because many of the advanced TyDD

tools live in niche research languages, their ecosystems are not

up to industry standards, and practitioners miss a lot of basic IDE

support. Lastly, current TyDD tools do not have enough support
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for building applications which interact with the real world and

their performance is not yet perceived as suitable for industry.

These findings are novel mainly because they now provide empir-

ical evidence for what has thus far only been known from anecdotes.

We have made the concept of type-driven development more con-

crete by providing a community-based definition and created an

explicit list of both its benefits and the current inhibitors to its

widespread use. All of these can now be used for communication

between the programming languages and software engineering

research communities, which could, through collaboration, make

advanced TyDD tools available to a wider range of developers.

To achieve such a goal, we suggest a research agenda that encom-

passes a gradual increase in type expressivity within mainstream

programming languages while still emphasising usability. Devel-

opers could then control just how much they wish to encode and

consequently prove on the type level, and still receive sufficient

support from their development environment. We define four ac-

tionable follow-ups for researchers and programming language

designers and maintainers:

(1) Bring user-oriented design to the forefront of type system
research. Building a strong, usable basis for the tools we

already have would make them applicable in more contexts

for a wider range of developers.

(2) Investigate whether existing statically-typed languages could
benefit from TyDD tools without having to change their type
systems. Hazel [40] is a good example of a language with

a basic type system which leans heavily into hole-driven

development, creating a live programming environment for

its developers.

(3) Incorporate type refinement directly into existing language
compilers. Refinement types are currently available in some

mainstream programming languages as separate add-ons [9,

18, 45, 52, 54], but we hypothesise that incorporating them

natively would allow for a more natural adoption.

(4) Combine compile-time and runtime type checking. Adding
fully capable, complex types to an existing language with-

out sacrificing its flexibility might be too ambitious a goal to

reach directly, but combining them with generated runtime

checks as is done in hybrid type checking [17] and gradual

types might provide a good starting point.
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