
How Novices Perceive
Interactive Theorem Provers

 Workshop on Type-Driven Development 2024
with illustrations inspired by https://xkcd.com

1 | 	module Util where
2 | 	
3 | 	swap : a × b → b × a
4 | 	swap (a, b) = (b , a)
5 | 	

Util.agda ×

1 | 	module Util where
2 | 	
3 | 	swap : a × b → b × a
4 | 	swap (a, b) = (b , a)
5 | 	

Util.agda ×

Could not parse the left-hand side swap (a, b)
Problematic expression: (a, b)
Operators used in the grammar:
		None
when scope checking the left-hand side
swap (a, b) in the definition of swap

→ █

1 | 	module Util where
2 | 	
3 | 	swap : a × b → b × a
4 | 	swap (a, b) = (b , a)
5 | 	

Util.agda ×

Could not parse the left-hand side swap (a, b)
Problematic expression: (a, b)
Operators used in the grammar:
		None
when scope checking the left-hand side
swap (a, b) in the definition of swap

→ █

1 attempt to understand the message

1 | 	module Util where
2 | 	
3 | 	swap : a × b → b × a
4 | 	swap (a, b) = (b , a)
5 | 	

Util.agda ×

Could not parse the left-hand side swap (a, b)
Problematic expression: (a, b)
Operators used in the grammar:
		None
when scope checking the left-hand side
swap (a, b) in the definition of swap

→ █

1 attempt to understand the message

scope checking? operators? None?!

1 | 	module Util where
2 | 	
3 | 	swap : a × b → b × a
4 | 	swap (a, b) = (b , a)
5 | 	

Util.agda ×

Could not parse the left-hand side swap (a, b)
Problematic expression: (a, b)
Operators used in the grammar:
		None
when scope checking the left-hand side
swap (a, b) in the definition of swap

→ █

1 attempt to understand the message

scope checking? operators? None?!

2 ask the internet

1 | 	module Util where
2 | 	
3 | 	swap : a × b → b × a
4 | 	swap (a, b) = (b , a)
5 | 	

Util.agda ×

Could not parse the left-hand side swap (a, b)
Problematic expression: (a, b)
Operators used in the grammar:
		None
when scope checking the left-hand side
swap (a, b) in the definition of swap

→ █

1 attempt to understand the message

scope checking? operators? None?!

2 ask the internet

🔎 no results found

1 | 	module Util where
2 | 	
3 | 	swap : a × b → b × a
4 | 	swap (a, b) = (b , a)
5 | 	

Util.agda ×

Could not parse the left-hand side swap (a, b)
Problematic expression: (a, b)
Operators used in the grammar:
		None
when scope checking the left-hand side
swap (a, b) in the definition of swap

→ █

1 attempt to understand the message

scope checking? operators? None?!

2 ask the internet

🔎 no results found

3 stare at the code

1 | 	module Util where
2 | 	
3 | 	swap : a × b → b × a
4 | 	swap (a, b) = (b , a)
5 | 	

Util.agda ×

Could not parse the left-hand side swap (a, b)
Problematic expression: (a, b)
Operators used in the grammar:
		None
when scope checking the left-hand side
swap (a, b) in the definition of swap

→ █

1 attempt to understand the message

scope checking? operators? None?!

2 ask the internet

🔎 no results found

3 stare at the code

ummm... where’s the
syntax highlighting?

1 | 	module Util where
2 | 	
3 | 	swap : a × b → b × a
4 | 	swap (a , b) = (b , a)
5 | 	 ↑

Util.agda ×

Could not parse the left-hand side swap (a, b)
Problematic expression: (a, b)
Operators used in the grammar:
		None
when scope checking the left-hand side
swap (a, b) in the definition of swap

→ █

“there is a space missing on line 2, column 8”

1

Goal:
identify which aspects of interactive theorem provers
to improve with respect to usability

long-term:

1

Goal:
identify which aspects of interactive theorem provers
to improve with respect to usability

identify which obstacles novices face when learning to
use an interactive theorem prover

long-term:

this talk:

2

This Talk:

1.	Study Setup
2.	Identified Obstacles
3.	Observations
4.	The Future

STUDY SETUP

Stydy

4Study Setup •

35
bachelor
students

taking a course on
Functional Programming

Participants

Stydy

4Study Setup •

35
bachelor
students

taking a course on
Functional Programming

Participants

1.	 basics of functional programming in Haskell
2.	 introduction to Agda

Course Material

•	interactive development
•	Curry-Howard correspondence
•	indexed data types
•	dependent pattern matching
•	formal proofs using the identity type and
equational reasoning

(using the agda-mode extension in VS Code)

Stydy

4Study Setup •

35
bachelor
students

taking a course on
Functional Programming

Participants

1.	 basics of functional programming in Haskell
2.	 introduction to Agda

Course Material

•	interactive development
•	Curry-Howard correspondence
•	indexed data types
•	dependent pattern matching
•	formal proofs using the identity type and
equational reasoning

(using the agda-mode extension in VS Code)

+ more knowledge(one participant)

Stydy

5Study Setup • Survey

List up to five obstacles you encountered
when learning to use Agda:

1:

2:

3:

4:

5:

 https://qualtrics.com/agda-novices ×🔎

•	online
•	open-ended
•	five short, free-text fields
•	accepts up to five answers

Stydy

6Study Setup • Analysis

•	coding
•	diagramming
•	memo-writing

Using qualitative research techniques:

Stydy

7Study Setup • Analysis

“The Agda plugin in my [VSC] was often
crashing and I had to restart it.”

tooling

“Unicode in the code was
hard to get used to.”

syntax

codeCoding

Stydy

7Study Setup • Analysis

“The Agda plugin in my [VSC] was often
crashing and I had to restart it.”

tooling

“Syntax highlighting completely disappears
if there is some mistake in the code which

makes it harder to find the mistake.”
tooling

“Unicode in the code was
hard to get used to.”

syntax

codeCoding

Stydy

7Study Setup • Analysis

“The Agda plugin in my [VSC] was often
crashing and I had to restart it.”

tooling unintended,
buggy behaviour

“Syntax highlighting completely disappears
if there is some mistake in the code which

makes it harder to find the mistake.”
tooling impractical

design

“Unicode in the code was
hard to get used to.”

syntax unicode

code sub-codeCoding

Stydy

8Study Setup • Analysis

Diagramming

A

C

B

•	identify related categories of
obstacles

•	understand relationships
between obstacles

Stydy

8Study Setup • Analysis

Diagramming Memo-writing

A

C

B

•	identify related categories of
obstacles

•	understand relationships
between obstacles

notes of “ideas about codes
and their relationships as they

strike the analyst”1
Barney G. Glaser. 1978.
“Theoretical sensitivity: Advances in the methodology of
grounded theory.”

30 April

Stydy

9Study Setup • Summary & Limitations

a homogeneous set of students

in a short span of time

learning to use only one ITP

OBSTACLES
on the level of

Theory,
Implementation,

and Applicability in the Real World

Stydy

11Obstacles • Theory

“Dependent types were not intuitive.”

“[The idea that] the magic
happens during type checking

instead of execution [took time]
to wrap [my] head around.”

Unfamiliar Concepts

Stydy

11Obstacles • Theory

“Dependent types were not intuitive.”

“[The idea that] the magic
happens during type checking

instead of execution [took time]
to wrap [my] head around.” “The way you need to

think about your program
[is] much more abstract.”

Unfamiliar Concepts Complex Theory

Stydy

12Obstacles • Implementation

“Weird” Design

Examples include:

•	Unicode characters,

•	non-standard spacing rules

•	error messages requiring theoretical knowledge and experience to be helpful

•	abstractions requiring an understanding of the implementation

Stydy

12Obstacles • Implementation

“Weird” Design

Examples include:

•	Unicode characters,

•	non-standard spacing rules

•	error messages requiring theoretical knowledge and experience to be helpful

•	abstractions requiring an understanding of the implementation

“Unicodes [raise] the
barrier of entry.”

“Error messages
were not helpful.”

Stydy

13Obstacles • Implementation

Inadequate Ecosystem

The ecosystem that supports
program-writing in Agda is:

•	incomplete,
•	buggy,
•	inconvenient,
•	and not accessible to novices.

Stydy

13Obstacles • Implementation

Inadequate Ecosystem

“The installation of Agda is a
horrible experience.”

“Syntax highlighting [is] not

updating automatically and
not highlighting anything on

invalid syntax.”

The ecosystem that supports
program-writing in Agda is:

•	incomplete,
•	buggy,
•	inconvenient,
•	and not accessible to novices.

Stydy

14Obstacles • Applicability to Real World

 “[Agda] might be a bit too theoretical.”

Perceived Irrelevance

OBSERVATIONS

Stydy

16Observations

Many obstacles are a result of the high
coupling between Agda’s underlying
theory and its design.

1 1 | 	module Util where
2 | 	
3 | 	swap : a × b → b × a
4 | 	swap (a, b) = (b , a)
5 | 	

Util.agda ×

Could not parse the left-hand side swap (a, b)
Problematic expression: (a, b)
Operators used in the grammar:
		None
when scope checking the left-hand side
swap (a, b) in the definition of swap

→ █

attempt to understand the message

scope checking? operators? None?!

Stydy

16Observations

Agda’s ecosystem has very little
supporting infrastructure for novices.2

Many obstacles are a result of the high
coupling between Agda’s underlying
theory and its design.

1 1 | 	module Util where
2 | 	
3 | 	swap : a × b → b × a
4 | 	swap (a, b) = (b , a)
5 | 	

Util.agda ×

Could not parse the left-hand side swap (a, b)
Problematic expression: (a, b)
Operators used in the grammar:
		None
when scope checking the left-hand side
swap (a, b) in the definition of swap

→ █

ask the internet

🔎 no results found

Stydy

16Observations

stare at the code

ummm... where’s the
syntax highlighting?

Agda’s design makes it dependent on
a custom (and not user friendly)
development environment.

3

Agda’s ecosystem has very little
supporting infrastructure for novices.2

Many obstacles are a result of the high
coupling between Agda’s underlying
theory and its design.

1 1 | 	module Util where
2 | 	
3 | 	swap : a × b → b × a
4 | 	swap (a, b) = (b , a)
5 | 	

Util.agda ×

Could not parse the left-hand side swap (a, b)
Problematic expression: (a, b)
Operators used in the grammar:
		None
when scope checking the left-hand side
swap (a, b) in the definition of swap

→ █

Stydy

17Observations

Agda’s design makes it dependent on
a custom (and not user friendly)
development environment.

3

Agda’s ecosystem has very little
supporting infrastructure for novices.2

Many obstacles are a result of the high
coupling between Agda’s underlying
theory and its design.

1

Stydy

17Observations

Agda’s design makes it dependent on
a custom (and not user friendly)
development environment.

3

Agda’s ecosystem has very little
supporting infrastructure for novices.2

Many obstacles are a result of the high
coupling between Agda’s underlying
theory and its design.

1
It looks like we need to find a

way to make the infrastructure

more accessible and sturdy!

THE FUTURE

19

Focus on a more varied user base and a
wider selection of interactive theorem
provers.

1

19

Focus on a more varied user base and a
wider selection of interactive theorem
provers.

1

Sign up to participate in a study on how
we use interactive theorem provers!

19

Find solutions to the technical challenges
encountered in these studies.2

Focus on a more varied user base and a
wider selection of interactive theorem
provers.

1

Sign up to participate in a study on how
we use interactive theorem provers!

Stydy

20

What’s “COINDUCTION”?

function i just wrote!

complex theory

unfamiliar concepts

“weird” design

inadequate ecosystem

perceived irrelevance

How Novices Perceive ITPs • Thank you!

